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Abstract: The aim of this study is to investigate the heat transfer characteristics of turbulent airflow phenomena 
in a rectangular micro-channel in presence of two plane shaped (type-1) and diamond shaped (type-2) baffles 
which will help to develop various heat exchanger models. Finite volume method has been used to solve the 
governing equations and the FLUENT software has been employed to visualize the simulation results. For both 
the baffles, the profile of flow structure, normalized velocity profile, normalized friction factor and average Nusselt 
number have been investigated with the variations of Reynolds number ranges between [10,000-50,000]. In terms 
of fluid flow and heat transfer phenomena, it has been found that in the presence of diamond shaped baffles (type-
2) are more convenient than plane shaped baffles.  
Keywords: Rectangular micro-channel; Plane baffles; Diamond baffles; Turbulent airflow.  

 
 
1. Introduction 
 

Over the last few years, thermal efficiency of a flow has become one of the major issues in various engineering 
and scientific fields such as air conditioners, room coolers, chemical reactors, etc [1-7]. There are many 
mechanisms available to increase heat exchange in fluid media. A large number of authors [8-13] found that in the 
presence of baffles, the efficiency of heat transfer phenomena has become the most efficient mechanism and which 
baffles are mounted in the enclosure for increasing heat transfer and the rotation of enhancing turbulence.  

In a rectangular micro-channel with two periodically mounted square baffles, Valencia et al. [14] numerically 
studied the turbulent air-flow and heat transfer phenomena using the standard k-ε turbulence model and found that 
the presence of baffle causes the enhancement of heat transfer. In presence of solid and perforated baffles, Dutta 
et al. [15] investigated the enhancement of thermal characteristics in a rectangular micro-channel. In addition, the 
influence of baffle spacing, length and pitch of baffles were also investigated by Dutta et al. [16, 17]. Based on the 
experimental geometry of Dutta et al. [17], numerical studies on turbulent air-flow were performed by Saim et al. 
[18] using plane baffles for inclined angle 450 and 600. In a tube with circular baffles, Ozceyhan et al. [19] 
performed a numerical study on different characteristics of heat transfer phenomena. In a rectangular micro-
channel with pin shaped baffles, Wang et al. [20] numerically and experimentally studied the characteristics of 
heat transfer phenomena. By numerically and experimentally, Nanan et al. [21] made a comparative study on heat 
transfer characteristics in presence of typical straight baffles, straight cross-baffles, straight alternate-baffles, 
twisted-baffles, alternate twisted-baffles and twisted cross-baffles. Gholami et al. [22] numerically studied the 
laminar and forced flow and heat transfer of oil/multi-walled carbon nanotubes nanofluid in a micro-channel with 
ribs of the forms rectangular, oval, parabolic, triangular and trapezoidal for different values of Re and volume 
fractions. The results of this work indicate that the existence of ribs enhances the friction factor and Nusselt number 
significantly. Among the ribs considered in this work, the parabolic rib, in respect of the augmentation of friction 
factor, has the best proportion of Nusselt number enhancement. Behnampour et al. [23] numerically investigated 
the effect of using rectangular, triangular and trapezoidal ribs on laminar heat transfer of water/AgO nanofluid 
flow for nanoparticles volume fractions of 0–4% in a rectangular micro-channel. They observed that the 
rectangular rib causes the maximum changes in velocity profile along the central line of flow and the triangular 
rib provides the best rate of thermal enhancement factor. 

Akbari et al. [24] numerically studied the effect of change in the height of the rib on flow and laminar heat 
transfer of water/Al2O3 nanofluid in a two-dimensional micro-channel. They figured out that, by increasing height 
of the rib, Re and volume fraction of nanoparticles, the rate of heat transfer can be improved. The effect of 
rectangular rib on the laminar heat transfer of water/Al2O3 nanofluid flow in a three-dimensional rectangular 
micro-channel has been studied by Akbari et al. [25]. In their work, it is demonstrated that by increasing Re, 
number of ribs and volume fraction of nanoparticles, the heat transfer on the heated surfaces can be improved. 
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Karimipour et al. [26] simulated the effect of using rectangular rib on the forced heat transfer of water/Ag nanofluid 
in a rectangular micro-channel under the constant thermal boundary condition. They found that due to increase in 
volume fraction of nanoparticles and number of ribs, Nusselt number enhances significantly for higher Re. In a 
rectangular micro-channel with two plane baffles (alternately mounted on the walls), Demartini et al. [27] 
performed an experimental work on air flow phenomena only in presence of plane baffles. They observed that the 
vortex length increases with the increase of Reynolds number. For the inclined baffles, Nassiruddin et al. [28] 
studied the enhancement of heat transfer phenomena for various values of Re. They showed that the value of 
average Nusselt number increases with the increase of baffle height and presence of baffles increase average 
Nusselt number by nearly 70%. 

The current work is a modification and extension of the experimental research works performed by Demartini 
et al. [27], numerical work of Saha et al. [29] and Saha [30]. The work of Dermitini et al. [27] does not provide 
any kind of variation in terms of different baffle configurations and does not include the heat transfer phenomena. 
The above reasons motivated us to carry forward the present study. In this study, two plane baffles and two 
diamond shaped baffles have been considered to know the characteristics of flow phenomena and heat transfer. 
As per our knowledge, this type of modification and the variations of baffle configurations were not considered 
earlier. This study becomes very much helpful for various engineering communities and industries, to select 
suitable baffle configurations in terms of flow phenomena and different characteristics of heat transfer phenomena. 
 
2. Physical geometry 
 

Figure 1 present the physical geometry along with plane baffles (Fig. 1a) and diamond shaped baffles (Fig. 1b), 
where two baffles are alternately mounted on the micro-channel walls. In this work, flow is assumed to be viscous, 
steady, incompressible, Newtonian and body forces, effect of viscous dissipation and the radiation of heat transfer 
have been neglected [29].  
 

 
Figure 1. Rectangular micro-channel with plane baffles (a) and diamond shaped baffles. 

 
 
3. Governing equations of the problem geometry 
 

The present problem has been governed by the following continuity, momentum and energy equations [26-37]. 
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The parameters, 𝜌𝜌 and µ  have been taken from the works of Dermitini et al. [27] and Saha et al. [29]. Here, 

 𝑢𝑢𝑖𝑖 , 𝑢𝑢𝑗𝑗 , p,  𝜌𝜌 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗  and 𝜌𝜌 𝑢𝑢𝑖𝑖𝑡𝑡𝑗𝑗  denoted as the components of mean velocity along xi and xj directions, pressure, 
Reynolds stresses and thermal stresses respectively. In 1975, Boussinesq introduced the following equation to 
characterize the Reynolds stresses. 
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Where δ𝑖𝑖𝑖𝑖, µ𝑡𝑡𝑡𝑡, ktr denote the Kronecker delta, turbulent eddy viscosity (eq. 5) and turbulent kinetic energy 
(eq. 6) respectively with   
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ktr

2
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Standard k-𝜀𝜀 turbulence model [30] has been used for the turbulence flow phenomena, which are given by 
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When, 𝑅𝑅𝑅𝑅 ≥  104, the value of Nu has been taken from the Dittus and Boelter correlation form [31], and the 

value of f0 taken from the Petukhov correlation form [32] when 3×103≤Re≤5×106. Here, Re, 𝐷𝐷ℎ, 𝑈𝑈, 𝜏𝜏𝑤𝑤 and 𝛥𝛥𝛥𝛥 
described as per Saha et al. [29-32].  

Boundary conditions are as follows: 
1) Boundary condition at Inlet section: ktr =  0.005 𝑢𝑢02, εtr(inlet dissipation) = 0.1 ktr

2  and 𝑇𝑇𝑖𝑖𝑖𝑖 = 300𝐾𝐾. 
2) Boundary condition at outlet section: 
 
 ∂
∂x

(u) = 0, ∂

∂x
(ktr) = 0, and ∂

∂x
(εtr) = 0. 

 
3) Boundary condition at the boundary walls: 
 
 ∂
∂n

(ktr) = 0, ∂

∂n
(εtr) = 0.  

 
At upper wall 𝑇𝑇𝑤𝑤 = 375 𝐾𝐾 and the lower wall is assumed to be thermally insulated. 

 
4. Results and discussions 

 
In this section, the characteristics of flow phenomena and thermal behavior have been presented in the form of 

graphs. 
 
4.1 Grid test and code validation 

In presence of two plane baffles and at Re = 87,300, a grid independency test (fig. 2a) has been performed to 
assess the impact of grid sizes on the simulated results like Demartini et al. [27] and Saha et al. [29]. From the 
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figure 2(b-c), it is cleared that 20,000 elements (Demartini et al. [27] and Saha et al. [29]) are sufficient to carry 
forward the present work. 

 
4.2 Flow phenomena 

At Re= 12000, 48000 velocity streamlines have been examined to know the impact of baffle configurations as 
shown in figures 3(a-d). It both the cases, it is observed that the flow field comes into contact with insulated wall 
due to the presence of the first baffle and velocity value becomes maximum at the top section of the second baffle. 
As a result, after the first baffle, the pressure values decreases and large length of vortex zone appears after the 
second baffle due to the low velocity.  It has also been found that at the upstream section of the micro-channel 
absolute pressure drop attains its highest value and minimum value achieved at the downstream section of the 
micro-channel. It has also been observed that the length of recirculation zone increases with the increase of Re.  
 

Table 1. Maximum velocity for various Re. 
Plane baffles (type-1) Diamond shaped baffles (type-2) 
Re x= 0.525 m Re x= 0.525 m 

48000 17.4 m/s 48000 21.12 m/s 
 

 
Figure 2. Variations of average pressure coefficients along hot wall (a) and dimensionless velocity profile at x= 
0.159 m (b), x= 0.189 m (c). 
 

 
Figure 3. Velocity streamlines for 𝑅𝑅𝑅𝑅 =  12000  (a, b) and 𝑅𝑅𝑅𝑅 =  48000  (c, d) for type-1 (a) and type-2 
configurations. 

 
For both the cases, normalized velocity profiles have been presented in figure 4 for various values of Re at fixed 

location x=0.525m. It is found for the figures 3 and 4 that the velocity profiles become more enhanced in case of 
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type-2 micro-channel than type-1 micro-channel, which has been highlighted in table 1. In addition, at x=0.525m 
and at Re =48,000, it is calculated that the flow velocity becomes approximately 4.12 times and 5.23 times of 
reference velocity in case of type-1 micro-channel and type-2 channel respectively. Moreover, in case of type-2 
micro-channel, maximum flow velocity becomes approximately 1.24 times of that type-1 micro-channel. 
 

 
Figure 4. Normalized velocity profile at locations x= 0.525 m for various Re. 

 
4.3 Thermal enhancement 

The change in heat transfer is related to the friction coefficient penalty, which causes the absolute pressure drop 
to increase. It is found that the maximum friction values in the intermediate zone between two baffles are attains 
due to the presence of the weak zone. In the region ahead of first baffle, it is investigated that the friction coefficient 
becomes negligible at the upstream of first baffle. At Re = 48000, it has been concluded that in type-2, normalized 
friction factor (fig. 5a) becomes more enhanced than type-1. 
 

 
Figure 5. Variation of F (a), 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 (b), and TEF (c) for different values of Re. 

 
It has also been seen that the value of F, 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 and TEF increase with the increase of Re. Maximum values of 

the 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 (fig. 5b) are seen after the second baffle due to the highest flow velocity. For both the cases, figure 5(c) 
present the profile of TEF for various values of Re. It has observed that the length of the recirculation zone becomes 
more significant because of the improvement in thermal gradient at peak velocity. In case of type-2 micro-channel, 
it has also been found that the values of F; 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 and TEF increase up to nearly 1.18, 1.37 times and 40% those 
in the case of type-1 micro-channel. 
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5. Conclusions 
 

A comparative study has been performed to study the different characteristics of turbulent airflow phenomena 
and thermal behavior in a rectangular micro-channel with two types of baffle configuration (Plane and diamond 
shaped baffles). The major conclusions have been prescribed as follows: 

1) From the whole study, it has been concluded that in terms of maximum flow velocity, normalized friction 
factor,  average Nusselt number and thermal enhancement factor become more pronounced in case of type 2 micro-
channel than type-1 micro-channel. 

2) Further, it has been ensured that in terms of heat transfer, diamond shaped baffles (type-2) are more 
convenient as compared to the use of plane baffles (type-1). 

For different engineering communities and industries, this research is very helpful in selecting which type of 
baffle configurations in terms of flow phenomena and different characteristics of heat transfer phenomena. 
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