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Abstract: This paper presents a 2D analytical model for predicting the magnetic flux density distribution in slotless 
permanent-magnet (PM) linear tubular (PMLT) motors due to armature reaction effects based on the sub-domain 
method. According to this method, the machine cross-section is divided into the six sub-regions and Maxwell 
partial differential equations (PDEs) are formed in each sub-region. Solving these PDEs leads to defining the 
magnetic vector potential in each sub-region and applying curl on the calculated magnetic vector potential results 
in determining the magnetic flux density components. Eventually, the extracted results are compared with those 
of the finite-element method (FEM) to confirm the accuracy of the described analytical model. The results reveal 
that the presented analytical model is a suitable candidate for predicting the magnetic flux density components of 
the slotless PMLT motors in a shorter time.  
Keywords: Analytical model; Armature reaction; Linear tubular motor; Maxwell equations; Sub-domain method. 

1. Introduction

Various industrial and technological applications demand a linear motion that leads to developing linear
machines in the past decades due to their unique advantages. The main advantage of these types of electrical 
machines is removing mechanical mechanisms. The mechanical mechanisms such as crankshafts and gears lead 
to increasing the losses and reducing the system agility and dynamic performance. Also, removing the mechanical 
mechanism results in having reliable and simple motion and the frictional wear is generated only in bearings [1]-
[3]. According to the excitation, the linear machines are categorized into various groups and PM linear 
synchronous machines (PMLSMs) due to their considerable advantages such as high power density and low 
volume are extensively used in high speeds with high precision applications, transportation, factory automation 
systems and semiconductor manufacturing [4],[5]. 

The PMLSMs are mainly divided into the PM linear planar [6] and tubular [7] motors where in the tubular ones 
the winding are wound around the motor and the demerit of the end-turn effects are eliminated. Moreover, the 
radial force between the PMs and the stator cores in the PM linear tubular motor is nearly zero due to the 
symmetrical structure which is demonstrated in Fig.1. The stator structure in the linear PM motor is divided into 
the slotted and slotless structures where the detent force in the slotless stator structure is about zero. Also, the cost 
of winding in the slotless motor is lower than this cost in the slotted one [8]. 

Fig. 1. The configuration of the PMLT motor 

According to the eminent advantages of PM linear motors, it is necessary to determine an accurate model for 
predicting their behavior. So, the analytical and numerical models are developed to explain the behavior of the PM 
linear motors. The numeric models such as FEM, have high accuracy and these models are useful for considering 
geometric details and the nonlinearity of magnetic material [9]-[11]. But, the simulation time is the main 
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disadvantage of the numerical models and these models are time-consuming in the design and optimization issues 
including too many iterations. Therefore, the analytical models, if possible, are preferred compare with the 
numerical ones due to their three privileges. The first benefit is related to the simulation time and this benefit is 
highlighted in the optimization step that is an essential issue for the design stage [12],[13]. Secondly, the analytical 
models provide a better sense of the system behavior by defining all the relevant equations and it is possible to 
realize the main parameters for controlling the output. The flexibility of the analytical model in terms of changing 
the design parameters is realized as the third advantage of these models where it is necessary to remodel the 
machine configuration to apply these changes in the numerical models[14]-[16]. Therefore, various researches 
have been concentrated on the analytical model in electrical machines, such as the PMLT motors under the study, 
since the past decades [17]-[21]. For instance, Wang J et al. [17] described the analysis, design, and experimental 
characterization of three-phase tubular modular permanent-magnet machines equipped with quasi-Halbach 
magnetized magnets where the effects of armature currents were not investigated in this paper. Wang J et al. [18] 
also prepared a new paper for analyzing the armature reaction field and defining the optimum design of the tubular 
PM machine. However, the permeability of cores in this paper was assumed infinite and there was no sense about 
the magnetic flux density distribution in cores. In [19] the analysis and experimental verification of a short-stroke, 
single-phase, quasi-Halbach magnetized tubular permanent magnet motor was described in which the magnets 
were mounted on a nonmagnetic support tube. Analytical solutions for the magnetic field distribution in the 
airspace and magnet regions were established in the cylindrical coordinate system and the flux density distribution 
in cores was not investigated in this paper [19]. The semi-analytical field calculation of the armature reaction in 
brushless tubular PM actuators with rectangular slots was reported in [20] where the permeability of cores is 
assumed infinite and the magnetic flux density components in cores were not studied. Meessen K. J et al. [22] 
explained the effects of changing the magnet shape of PMs in a slotless tubular actuator where the effects of 
armature currents were not determined and the flux density distributions in cores were not investigated due to 
assuming infinite permeability of cores. Therefore, an accurate model is required for calculating the flux density 
distribution in all regions of the PM tubular motors.  

The main contribution of this paper is to explain an accurate analytical model of the presented PMLT motors 
for predicting the magnetic flux density components due to armature currents in all regions of the machine based 
on the sub-domain method.  
 
2. Proposed method 
 
2.1 Assumptions 

The presented slotless PMLT motor is illustrated in Fig. 2 and all six sub-regions (i.e. exterior (e) stator (s), 
winding (w), air-gap (a), PMs and mover (m) are shown in this figure. According to the machine structure, the 
polar coordinate is selected for modeling the motor under the study.  

 

 
𝜏𝜏𝑝𝑝, 𝜏𝜏𝑚𝑚, 𝑅𝑅𝑚𝑚, 𝑅𝑅𝑝𝑝𝑚𝑚, 𝑅𝑅𝑎𝑎, 𝑅𝑅𝑤𝑤 and 𝑅𝑅𝑠𝑠 are pole pitch, PMs width, the radius of  mover, PM, air-gap, winding and 

stator radius, respectively. 
Fig. 2. The slotless PMLT motor under the study and the related sub-regions 

 
Based on the sub-domain method, it is necessary to define the relevant assumptions and Maxwell PDEs in each 

sub-region are formed based on these assumptions. The pertinent assumptions for obtaining the analytical model 
of the studied motor are listed as follows: 

a) The machine has infinite axial length. 
b) The magnetic flux is originated due to only armature current. 
c) The magnetic flux density vector has only radial and axial components. Also, the magnetic flux density vector 

and magnetic vector potential are independent of θ. 

111

A. Ghaffari Journal of Modeling and Optimization 2020;12(2):110-116



d) Magnetic vector potential has only θ component which is a function of radial (r) and axial position (z). 
e) 6- The eddy current reaction is neglected. 
f) 7- Current density vector, 𝑱𝑱, has only θ component which is a function of z and time (t). 

 
2.2 Maxwell PDEs in each sub-region 

According to the explained sub-regions, two main categories can be defined for the extracted Laplace and 
Poisson PDEs in the PMLT motor as follow: 

 
∇2𝑨𝑨𝒖𝒖=0 𝑢𝑢 = 𝑚𝑚,𝑃𝑃𝑃𝑃, 𝑎𝑎, 𝑠𝑠, 𝑒𝑒 (1) 

∇2𝑨𝑨𝒘𝒘 = −𝜇𝜇0 𝑱𝑱  (2) 
 
where 𝜇𝜇0  is free space permeability. ∇2  is the laplacien operator and in the polar coordinate this operator is 
determined in the follow expression form: 
 

∇2𝐴𝐴 = [
1
𝑟𝑟

 
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟

𝜕𝜕
𝜕𝜕𝑟𝑟
� +

𝜕𝜕2

𝜕𝜕𝜕𝜕
]𝐴𝐴𝜃𝜃(𝑟𝑟, 𝜕𝜕) (3) 

 
To obtain the analytical model based on sub-domain method it is necessary to describe the armature reaction 

currents. In the q phases slotless PMLT machines the applied currents are defined as: 
 

2 ( 1)sin , 1, 2,...(t ,)
z
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L q

              
  



    (4) 

 
where 𝐼𝐼𝜉𝜉 , 𝛽𝛽𝜉𝜉 , 𝑣𝑣, 𝑝𝑝 and 𝐿𝐿𝑧𝑧 are the input peak current, phase shift of 𝜉𝜉𝑡𝑡ℎ harmonic of the phase currents, the velocity 
of the mover, number of pole-pairs and stator length, respectively. According to the explained armature currents 
the current density Fourier series expansions is presented as: 
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, n is maximum harmonic orders,  𝐽𝐽1𝑛𝑛 and 𝐽𝐽2𝑛𝑛 are current density Fourier series components that 

are described as: 
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where 𝑁𝑁𝑡𝑡 is the number of turns per coil,   is the phase by symmetrical distribution with respect to the z-axis. Fig. 
3 presents the three phases winding currents and the applied current can be determined as: 
 

𝑖𝑖𝑎𝑎(𝑡𝑡) = 𝐼𝐼𝑚𝑚 sin�
𝑣𝑣
𝜏𝜏𝑝𝑝
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where 𝐼𝐼𝑚𝑚 is the peak of applied armature current. 
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Fig. 3. Three phases winding of the presented slotless PMLT motor 

 
Therefore, applying Eqs. (4)-(10), leads to obtaining the following Fourier series components for 3 phases 

machine: 
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According to the extracted PDEs in each sub-region and the current density Fourier series expansion, the 

magnetic vector potential in each sub-region is defined as follow: 
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where 𝐼𝐼1 and 𝐾𝐾1 are type one of the first and second kinds of modified Bessel function. Applying curl on the 
obtained magnetic vector potential results in calculating the magnetic flux density components in each sub-region. 
Therefore, the normal (𝐵𝐵𝑟𝑟) and tangential (𝐵𝐵𝑧𝑧) components of the magnetic flux density are determined in the 
following expressions:  
 

𝐵𝐵𝑟𝑟 = −
𝜕𝜕𝐴𝐴𝜃𝜃(𝑟𝑟, 𝜕𝜕)

𝜕𝜕𝜕𝜕
 (15) 

𝐵𝐵𝑧𝑧 =
1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟𝐴𝐴𝜃𝜃(𝑟𝑟, 𝜕𝜕)) (16) 

 
Noted that 𝐼𝐼1′(𝑥𝑥) = 𝐼𝐼0(𝑥𝑥) − 1

𝑥𝑥
𝐼𝐼1(𝑥𝑥),  𝐾𝐾1′(𝑥𝑥) = −𝐾𝐾0(𝑥𝑥) − 1

𝑥𝑥
𝐾𝐾1(𝑥𝑥) where 𝐼𝐼0 and 𝐾𝐾0 are the type zero of the first 

and second kinds of modified Bessel function, respectively.  
 
2.3 Boundary conditions 
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The obtained magnetic flux density components include 20 unknown variables such as { 𝑏𝑏𝑛𝑛𝑒𝑒, 𝑑𝑑𝑛𝑛𝑒𝑒 , 𝑎𝑎𝑛𝑛𝑠𝑠 , 𝑏𝑏𝑛𝑛𝑠𝑠 , 𝑐𝑐𝑛𝑛𝑠𝑠 , 𝑑𝑑𝑛𝑛𝑠𝑠 , 
𝑎𝑎𝑛𝑛𝑤𝑤, 𝑏𝑏𝑛𝑛𝑤𝑤, 𝑐𝑐𝑛𝑛𝑤𝑤, 𝑑𝑑𝑛𝑛𝑤𝑤, 𝑎𝑎𝑛𝑛𝑎𝑎, 𝑏𝑏𝑛𝑛𝑎𝑎, 𝑐𝑐𝑛𝑛𝑎𝑎, 𝑑𝑑𝑛𝑛𝑎𝑎, 𝑎𝑎𝑛𝑛

𝑝𝑝𝑚𝑚,𝑏𝑏𝑛𝑛
𝑝𝑝𝑚𝑚, 𝑐𝑐𝑛𝑛

𝑝𝑝𝑚𝑚, 𝑑𝑑𝑛𝑛
𝑝𝑝𝑚𝑚, 𝑎𝑎𝑛𝑛𝑚𝑚, 𝑐𝑐𝑛𝑛𝑚𝑚}. According to the geometry considerations and the 

defined coordinate system, some of these variables must be zero, (i.e. 𝑎𝑎𝑛𝑛𝑒𝑒 = 𝑐𝑐𝑛𝑛𝑒𝑒 = 𝑏𝑏𝑛𝑛𝑚𝑚 = 𝑑𝑑𝑛𝑛𝑚𝑚 = 0). Therefore, it is 
necessary to explain 20 equations to determine the exact magnetic flux density expressions.  Hence, the boundary 
conditions are utilized to predict the magnetic flux density distributions. Based on the magnetic boundary 
conditions, the normal component of the magnetic flux density is continuous at the interfaces between two adjacent 
sub-regions. Also, In the case of the source-free interface, the tangential component of the magnetic field intensity 
is continuous at that interface. So, the boundary conditions in the presented PMTL motor is defined as follow: 

 
𝐵𝐵𝑟𝑟𝑖𝑖(𝑟𝑟, 𝜕𝜕)|𝑟𝑟=𝑅𝑅 = 𝐵𝐵𝑟𝑟𝑖𝑖+(𝑟𝑟, 𝜕𝜕)|𝑟𝑟=𝑅𝑅 

( )
( ) ( ) ( )
( ) ( )

s w a

mPM

e, s, R , s,w, R , w,a, R ,
i,i+, R =

a, PM, R , PM,m, R

 
 
 

 (17) 
𝐻𝐻𝑧𝑧𝑖𝑖(𝑟𝑟, 𝜕𝜕)|𝑟𝑟=𝑅𝑅 = 𝐻𝐻𝑧𝑧𝑖𝑖+(𝑟𝑟, 𝜕𝜕)|𝑟𝑟=𝑅𝑅 (18) 

 
3. Results and discussions 

 
In order to validate the described analytical model, the magnetic flux density components due to only armature 

currents are calculated for the case study. The obtained analytical results are compared with those of FEM to 
determine the accuracy of the extracted results. Table 1 lists the main design parameters of the PMLT motor under 
the study to predict the magnetic flux density in each sub-region. The analytical and numerical results are shown 
in Fig. 4. As it is evident, the numerical results confirm the accuracy of the derived analytical model. Therefore, 
the numerical model can be replaced by the defined analytical model for predicting the magnetic flux density 
distribution in all media of the presented PMLT motor to save time.  Moreover, the simulation time reveals that 
the analytical model is 14 times faster than the numerical one and this benefit is highlighted in the design and 
optimization issues including several thousands of optimization iterations. 

Noted that, the magnetic flux density amplitude in each sub-region is not considerable due to the large magnetic 
air-gap height in the slotless stator structure of the presented linear motor.    
 

Table 1. The main design parameters of the studied PMTL motor 
Parameters Value 

Number of pole-pairs 2 
Number of winding phase  3 

PM Remanence flux density (T) 0 
Motor axial length (mm) 240 

PM width (mm) 40 
Mover radius (mm) 10 

PM radius (mm) 20 
Air-gap radius (mm) 22 
Winding radius (mm) 35 

Stator radius (mm) 50 
Motor speed (m/s) 1 
PM permeability 1.08 

Number of turns per coil 150 
Peak of armature current (A) 5 

 
4. Conclusions 

 
In this paper, a 2D analytical model has been developed for determining an accurate model of slotless PM linear 

tubular motor. The defined analytical model was employed to predict the effects of armature currents on magnetic 
flux density distribution in all sub-regions of the motor based on the sub-domain method. Moreover, finite 
permeability of all sub-regions and its corresponding impacts have been explained to calculate the magnetic flux 
density in cores. The normal and tangential components of the magnetic flux density were analytically extracted 
based on solving the Maxwell equations. The FEM was employed to confirm the accuracy of the presented model. 
Also, the simulation time explained the most highlighted benefit of the utilized analytical model where this model 
was 14 times faster than the numerical one in the case study. Therefore, the obtained model can be realized as a 
proper candidate in the design and analysis of the slotless PMLT motor. Based on the slotless structure of the 
motor under the study, the magnetic flux density components were not notable but these small amounts are 
necessary to provide the output power. 
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(a): Mover (b): PM 

  
(c): Air-gap (d): Stator 

                       - -  Analytical results of the axial component of the flux density 
−  Analytical results of the radial component of the flux density 
 O  Numerical results of the radial component of the flux density 
×  Numerical results of the axial component of the flux density 

Fig. 4. Magnetic flux density components in all sub-regions of the motor under the study due 
to only armature reaction 
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