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Abstract: Environmental pollution in urban areas may be mainly attributed to the rapid industrialization and 
increased growth of vehicular traffic. As a consequence of air quality deterioration, the health and welfare of 
human beings are compromised. Air quality monitoring networks usually are used not only to assess the pollutant 
trend but also in the effective set-up of preventive measures of atmospheric pollution. In this context, monitoring 
can be a valid action to evaluate different emission control scenarios; however, installing a high space-time 
resolution monitoring network is still expensive. Merge of observations data from low-cost air quality monitoring 
networks with forecasting models can contribute to improving significantly emission control scenarios. In this 
work, a validation algorithm of the forecasting model for the concentration of small particulates (PM10 and PM2.5) 
is proposed. Results showed a satisfactory agreement between the PM concentration forecast values and the 
measured data from 3 air quality monitoring stations. Final average RMSE values for all monitoring stations are 
equal to about 4.5 µg/m3. 
Keywords: Air quality; Forecast models; Monitoring; Pollution; Particular matter.  

1. Introduction

Particulate Matter (PM) causes acute and chronic effects, particularly at the respiratory level since they can
penetrate deep into the lungs. Primary PM sources are industrial production, transport and residential. Therefore, 
it is crucial to make many efforts to monitor and control air pollution in an urban context [1]. The monitoring 
stations are an efficient solution in collecting vast amounts of pollutant concentrations in real-time in urban and 
extra-urban areas and they are a support for citizens who can know the pollution status of their city [2]. Increasing 
the numbers of sampling points is possible to obtain a more detailed view of the environmental situation [3]. In 
recent years, many approaches are developed to predict air quality based on existing historical air quality and 
meteorological data [4]. A model is a simplified representation of the reality and it gives an approximate 
description of the modeled phenomenon. One of the main purposes of modeling is the phenomenon explanation, 
sometimes it can be used to describe the mechanism behind the reality we are investigating. Considerable relative 
humidity usually causes increases in PM concentrations due to the hygroscopic effect of aerosols, but not for PM10 
in spring and summer, mainly due to the suppression of dust emissions under wet air conditions in spring and the 
impact of wet scavenging under high summer rainfall [5].  

The relationships between meteorological factors, traffic flow, topographical factors and particulate 
concentration have been analyzed using models with inferential statistics, such as linear regression or correlation 
analysis [6]. In this work, a new methodology is proposed able to forecast the urban quality air using the 
concentration levels of particulate matter and meteorological conditions. The air quality data recorded by 
monitoring stations installed in a southern city of Italy during the whole month of August 2018 were considered. 
From 1st September to 10th November, a comparison was made between the predicted concentrations of PM2.5 
and PM10 using the model with the measured concentrations by monitoring stations to fine-tune the model. Finally, 
a correlation between air pollution and some meteorological factors (wind speed and direction, humidity) was 
investigated. 

2. Air quality monitoring area
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Battipaglia is a city in the south of Italy. Recently, the city has been characterized by a lot of environmental 
issues regarding the air quality from its extend industrial area and its three dumps sites which are monitored 
continuously. An air quality-monitoring network composed of three stations has been located with the purpose to 
monitor the particular matter concentration (PM 2.5 and PM 10). As shown in Figure 1, the stations are localized 
between the industrial area and the city center. 
 

 
Figure 1. Graphical representation of the installed monitoring network between the Industrial area of Battipaglia 
(Italy) and City center. 
 
3. Methodology 
 
3.1 Data collection 

The concentration of small particulates (PM10 and PM2.5) and meteorological parameters (wind direction and 
velocity, temperature, humidity) have been collected for all days of August 2018 by three monitoring stations 
installed in Battipaglia city (Italy) in the position located between the industrial area and the urban center (Figure 
1).  
 
3.2 August-day data analysis 

Provided the data at every hour, the data processing returns average values, c�i,j,k in Eq. 1. Data were collected 
by value intervals for each different parameter (relative humidity, wind intensity and intensity, temperature, daily 
hour). The raw data were examined and some adjustments were made to purify data by outlier values. The time 
variability of data was considered studying its behavior during 24 hours of a day. 
 
3.3 PM concentration values by the forecasting model 

These data have been used to find the best fitting parameters of the model. Initial weight was considered based 
on the magnitude of the difference between 75° and 25° percentiles (box in Figure 2). So, for each parameter, the 
variability of data was evaluated considering the PM2.5/PM10 mean concentration in the parameter interval. A 
deterministic approach was used in this work. In Eq. 1, cj,h is the forecasted concentration for the day j and hour h, 
pi,j-1 is the model coefficient for the parameter i optimized by day j-1, 𝑐𝑐�̅�𝑖,𝑗𝑗−1,𝑘𝑘𝑖𝑖,𝑗𝑗,ℎ  is the average concentration 
(diamond in Figure 2) considering only parameter i, until day j-1, in the parameter interval (by Figure 2) ki,j,h, ki,j,h 
is the interval related to parameter i from forecasting database for the day j for the daily hour h. 
 
𝑐𝑐𝑖𝑖,ℎ =  ∑ 𝑝𝑝𝑖𝑖,𝑗𝑗−1𝑐𝑐𝑖𝑖,𝑗𝑗−1,𝑘𝑘𝑖𝑖,𝑗𝑗,ℎ

𝑛𝑛𝑝𝑝
𝑖𝑖=1                                                                                                                                    (1) 

 
3.4 Objective function description 

To find the best value of the coefficient associated with each parameter, an objective function was described as 
the sum of the quadratic deviations of the residuals between the estimated and the measured value. In Eq. 2, n is 
the day considered (from 1st to 71st), h in the daily hour, �̇�𝑐𝑗𝑗,ℎ is measured PM concentration by the monitoring 
stations. The coefficient estimation starts the first day using all the background of the previous 31 days of August. 
Going forward in the estimation of the coefficients, the number of days used as background for the estimation will 
progressively increase. In this way, the minimization takes into account not only what happened in the last 24 
hours, but also in the previous n days considered. 

 
𝑓𝑓𝑂𝑂𝑂𝑂,𝑛𝑛 =  ∑ ∑ (𝑐𝑐𝚥𝚥,ℎ̇ − 𝑐𝑐𝑗𝑗,ℎ)224

ℎ=1
𝑛𝑛
𝑗𝑗=1                                                                                                                              (2) 
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3.5 Model tuning 
From the 1st September to 10th November 2018 (71 days) a comparison was made between the predicted 

concentrations of PM2.5 and PM10 using the dispersion model with the measured concentrations by monitoring 
stations in order to fine-tune the model. It was found that after nTOT (71) days, a reliable model was obtained and 
no further adjustment was required to adjust prediction with experiments. 

 
4. Results 

 
For the sake of brevity, only for one monitoring station (S1) graphs are shown. On each box, the central mark 

indicates the median, the diamond indicates the mean value and the bottom and top edges of the box indicate the 
25th and 75th percentiles, respectively. Points are considered as outliers, indicated by a cross. Figure 2 shows 
clearly that the PM concentration varies in different ways on each parameter. The most significant variation of 
concentration depends on relative humidity ((a) in Figure 2), wind intensity ((b) in Figure 2) and daily hour ((e) 
in Figure 2). 

 

 
Figure 2. Variation of the average concentration of PM2.5 for S1 respect to intervals of a) relative humidity; b) 
wind intensity; c) temperature; d) wind direction; e) daily time. Data processing was carried out between 1st-31st 
August. Central mark indicates the median. Diamonds indicate the mean value. 
 

In order to estimate the robustness of the model, the RMSE (Root-Mean-Square Error) values were evaluated 
every day as: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗 =  � 1
24
∗ ∑ (𝑐𝑐𝚥𝚥,ℎ −̇ 𝑐𝑐𝑗𝑗,ℎ)224

ℎ=1                                                                                                                        (3) 

 
Finally, to summarize the performance of the model for each station, the average RMSE was calculated by: 
 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�������� = ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑗𝑗

𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇
𝑗𝑗=1                                                                                                                                           (4) 
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(a) 

 
(b) 

Figure 3. (a) Model coefficients pi from 1st to 71st day for PM2.5 concentrations for stations S1, S2, S3. (b) RMSE 
values from 1st to 71st day for PM2.5 concentrations for S1, S2, S3. 
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Figure 3 shows the behavior of the model coefficients for each day used for the minimization. The coefficients 
are more varying in the first days, while they are taking around a constant value after 40-50 days of observation 
(Table 1). The coefficient estimation is also essential to understand what parameter influences the phenomenon 
studied. As a result, relative humidity, wind intensity and time are the parameters that influence mainly the PM 
concentrations. This evidence is also underlined in Figure 2, where PM concentrations change during the day 
above all, according to the anthropic activities. The PM concentrations decrease by increasing the wind intensity 
because of air origin from the sea (SE direction) or mountains (other directions). 

 
Table 1. Coefficients pi for the last day for PM2.5 and PM10 and stations S1, S2, S3. 
 PM2.5 PM10 
 S1 S2 S3 S1 S2 S3 
p1 0.35 0.40 0.16 0.40 0.35 0.17 
p2 0.13 0.43 0.23 0.15 0.42 0.25 
p3 0 0 0 0 0 0 
p4 0 0 0.01 0 0 0.02 
p5 0.27 0.1 0.41 0.3 0.12 0.43 

 
 
RMSE values from 1st to 71st day are reported in Figure 3. The dotted line represents the RMSE of Eq. 3, the 

continuous black line is the average RMSE of Eq. 4. In the early days, RMSE was low because the meteorological 
conditions were similar to the previous days on which the model parameters were based. Between the 23rd and the 
31st day and between the 43rd and the 51st day the average error is very high (up to 15 μg/m3 difference) due to 
sudden and robust weather variations. After the 51st day and until the end of the comparison the values appeared 
to be close to the average RMSE values of Table 2. This demonstrates the robustness of the model. Table 2 shows 
how the error values are lower (about 1 μg/m3) for PM2.5 compared to PM10 due to lower concentration values 
for PM2.5. 
 
Table 2. Average RMSE (µg/m3) values obtained after 71st days for PM2.5 and PM10 concentrations for S1, S2, 
S3. 

                              PM 2.5                               PM 10 
S1 S2 S3 S1 S2 S3 
4.33 4.67 4.7 4.7 5.02 5.21 

 
5. Conclusions 

 
This work was focused on the development of a forecast model that uses experimental data of concentration of 

particular matter (PM2.5 and PM10). The data was obtained through 3 outdoor positioned monitoring stations in 
an area of about 10 km2 between an industrial zone and a densely popular urban center. The model results showed 
that the coefficients of the linear model are different after 71 days of optimization of the model. The coefficients 
changed from station to another. The more influence meteorological parameters are the relative humidity, wind 
speed and hour. After 71 days, the model shows a sufficient agreement model-experimental data, equal to about 4 
µg/m3 is for PM2.5 and PM10. This value appears reasonable considering the high variability of concentrations of 
pollutants and that the limit value of the law is equal to 50 and 25 µg/m3 for PM10 and PM2.5, respectively. RMSE 
values don't improve with more days. This is due to the change of season influencing the data strongly due to the 
different correlations between weather and pollution. Further data (until 12 months) are necessary in order to make 
model able to fit very well pollution data for every season. 
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