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Abstract: This paper presents a unique Possibilistic c-Means with constraints (PCM-S) with Adaptive Possibilistic 
Local Information c-Means (ADPLICM) in a supervised way by incorporating local information through local 
spatial constraints and local similarity measures in Possibilistic c-Means Algorithm. PCM-S with ADPLICM 
overcome the limitations of the known Possibilistic c-Means (PCM) and Possibilistic c-Means with constraints 
(PCM-S) algorithms. The major contribution of proposed algorithm to ensure the noise resistance in the presence 
of random salt & pepper noise. The effectiveness of proposed algorithm has been analysed on random “salt and 
pepper” noise added on original dataset and Root Mean Square Error (RMSE) has been calculated between original 
dataset and noisy dataset. It has been observed that PCM-S with ADPLICM is effective in minimizing noise during 
supervised classification by introducing local convolution. 
Keywords: Possibilistic c-MEANS (PCM); Possibilistic c-Means with constraints (PCM-S); Local similarity 
measures; Pixel spatial attraction mode; Mean membership difference (MMD); Root mean square error (RMSE). 

1. Introduction

Remote Sensing technology has been widely used to obtain useful information for extraction and discrimination 
of land cover by assigning a class label to each pixel in a digital image.  Lillesand et al [1] have mentioned digital 
image classification as a statistical technique to classify image into various desired classes. Digital image 
classification plays a key role in extracting land cover information using hard and fuzzy classification approach. 
Each pixel is assumed to be pure in case of hard classification and is classified to one class but in case of fuzzy 
classification mixed pixel problem exist and each pixel is assigned to multiple class memberships. Digital Image 
classification can be done in supervised as well as in unsupervised way.  
 Bezdek [2] presented Fuzzy c-Means (FCM) algorithm with the thought of fuzzy sets to solve mixed pixel problem 
which was previously introduced by Zadeh [3].  Zadeh’s idea was to assign a particular sample or pixel to more 
than one class with the help of a membership grade varying between 0 and 1. Krishnapuram et.al [4] presented a 
possibilistic fuzzy approach to interpret the membership value of pixel as a degree of possibility and later 
Krishnapuram et al [5] addressed the drawbacks associated with the constrained memberships used in FCM 
algorithm. Wu et.al [6] proposed an alternative c-means clustering algorithm to replace the Euclidean norm in c-
means clustering procedures on the basis of the robust statistic and the influence function.  

Li et al [7] revised the objective function of PCM and introduced MPCM which is less sensitive to noise, fit the 
clusters which are close to one another and it is one of the fast clustering algorithm as compared to FCM and PCM. 
Kumar et al [8] compared the accuracy of FCM against PCM and found that, PCM with Euclidean norm has the 
highest overall accuracy among them. Chawla [9] analysed the performance of PCM and] found to be better than 
FCM because PCM was able to surpass the effect of hyper-line constant found in FCM. In the context of remote 
sensing image analysis, MRF was used  for image restoration [10], texture classification [11], image segmentation 
[12] etc. The local contextual information helps to establish some relationship among the neighbouring pixels [13].

Ahmed et al [14] proposed Fuzzy c-Means with constraints (FCM-S) in which objective function of FCM is
modified in order to minimize the limitation of FCM by allowing the label of pixel to be influenced by labels of 
neighbors. Chen et al [15] proposed FCM_S1 and FCM_S2, two variants of FCM_S algorithm in order to resolve 
the problem of FCM_S by introducing mean and median filtered image respectively to replace the neighborhood 
term of FCM_S. In all these FCM based algorithms needs a crucial parameter to control the trade-off between the 
robustness to noise and the effectiveness of preserving the image details. Krinidis et al [16] introduced FLICM 
(Fuzzy Local Information c-Means) algorithm in order to overcome the problem in FCM-S, FCM-S1 and FCM-
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S2. Zhang et al [17] presented ADFLICM (Adaptive Fuzzy Local Information c-Means) algorithm to address the 
limitation of FLICM. 
 
2. Mathematical concept of preliminary algorithm 
 

Suppose an image X = {x1, x2, x3,…xi…….xN}, x є R, is a dataset in n-dimensional vector space and  N is the 
number of feature vectors. 

 
2.1 Possibilistic c-Means (PCM) algorithm 

In the PCM algorithm, each cluster is independent of the other clusters [5]. The objective function can be written 
as in eq. (1): 

 
𝐽𝐽𝑚𝑚 = ∑ ∑ (𝑢𝑢𝑗𝑗𝑗𝑗)𝑚𝑚  || 𝑥𝑥𝑖𝑖 −  𝑣𝑣𝑗𝑗||2 𝐶𝐶

𝑗𝑗=1 + 𝑁𝑁
𝑖𝑖=1 ∑ 𝜂𝜂𝑖𝑖𝑁𝑁

𝑖𝑖=1  ∑ (1 − 𝑢𝑢𝑗𝑗𝑗𝑗)𝑚𝑚                      𝐶𝐶
𝑗𝑗=1                                                        (1) 

 
The membership update equation in the PCM is 
 
𝑢𝑢𝑗𝑗𝑗𝑗(𝑛𝑛 + 1) =  1

1+ ∑ [ 
|| 𝑥𝑥𝑖𝑖−𝑣𝑣𝑗𝑗 ||2

𝜂𝜂𝑖𝑖
 ]

1
𝑚𝑚−1𝑁𝑁

𝑖𝑖=1

                                                                                                                       (2) 

 
In equation (2), 𝒗𝒗𝒋𝒋 represents the prototype associated with class C, and 𝜂𝜂𝑖𝑖 is the “bandwidth”, “resolution” or 

“scale” parameter which controls the shape and size of the class as in eq. (3); 
 

𝜂𝜂𝑖𝑖 =  
∑ (𝑢𝑢𝑗𝑗𝑗𝑗)𝑚𝑚 || 𝑥𝑥𝑖𝑖−𝑣𝑣𝑗𝑗 ||2𝑁𝑁
𝑖𝑖=1

∑ (𝑢𝑢𝑗𝑗𝑗𝑗)𝑚𝑚𝑁𝑁
𝑖𝑖=1

                                                                                                                                           (3)      

                                         
where, N is the total number of pixels in the image, i represents a pixel and it varies from 1 to N.  

In equation (1), first term controls the distance between the feature vectors i.e. the pixels and their prototypes 
to be low as possible and the second term, demands 𝑢𝑢𝑗𝑗𝑗𝑗 to be large as possible, by controlling the onset of trivial 
solution. The objective function, 𝐽𝐽𝑚𝑚  in equation (1) and membership value, 𝑢𝑢𝑗𝑗𝑗𝑗   in equation (2) satisfies the 
following condition given as eq. (4), (5) and (6): 

 
 𝑢𝑢𝑗𝑗𝑗𝑗 ∈ [0,1],∀ 𝑖𝑖, 𝑗𝑗                                                                                                                                                           (4) 

0 <  ∑ 𝑢𝑢𝑗𝑗𝑗𝑗𝑁𝑁
𝑖𝑖=1  ≤ 1,  ∀𝑖𝑖                                                                                                                                               (5) 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗

𝑢𝑢𝑗𝑗𝑗𝑗  > 0, ∀ 𝑖𝑖                                                                                                                                                      (6) 

 
PCM Algorithm includes the steps as follows: 
Step 1: Assign mean values for each class, 
Step 2: Assign the value of degree of fuzziness m>1, 
Step 3: Compute the regularization parameter 𝜂𝜂𝑗𝑗 from eq. (3), 
Step 4: Calculate the membership matrix uji  from eq. (2), 
Step 5: Assign final class to each pixel.  
 

2.2 Possibilistic c-Means with constraints (PCM-S) algorithm 
 
PCM-S has been introduced a novel term that enables the labelling of a pixel to be effected by labels of its 

neighbors.  
The neighborhood effect act as an allocator and drives the solution toward piecewise-homogeneous labelling. 

The modified objective function of PCM-S is defined in eq. (7) Singh et al [18]. 
 
𝐽𝐽𝑚𝑚 = ∑ ∑ (𝑢𝑢𝑗𝑗𝑗𝑗)𝑚𝑚𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 || 𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑗𝑗  ||2 + ∑ 𝜂𝜂𝑖𝑖𝑁𝑁

𝑖𝑖=1 ∑ (1 − 𝑢𝑢𝑗𝑗𝑗𝑗)𝑚𝑚𝐶𝐶
𝑗𝑗=1 + 𝛼𝛼

𝑁𝑁𝑅𝑅
∑ ∑ (𝑢𝑢𝑗𝑗𝑗𝑗)𝑚𝑚𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1  ∑ || 𝑥𝑥𝑟𝑟 − 𝑣𝑣𝑗𝑗  ||2 𝑟𝑟 ∈ 𝑁𝑁𝑖𝑖   

(7) 
 
where, 𝑥𝑥𝑗𝑗 is the gray level value of ith pixel, N is the total number of pixels, 𝑣𝑣𝑗𝑗  is the prototype value of the jth 
center, 𝑢𝑢𝑗𝑗𝑗𝑗 represents the fuzzy membership of ith   pixel with respect to class j, NR  is the cardinality, xr represents 
the neighbor of xi . The parameter   is 𝛼𝛼 used to supervise the effect of the neighbors term . 
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The calculation of c membership matrix is performed as follows in eq. (8)  
 

𝑢𝑢𝑗𝑗𝑗𝑗 =
[ 
�𝑥𝑥𝑖𝑖− 𝑣𝑣𝑗𝑗�

2

𝜂𝜂𝑖𝑖
+ 𝛼𝛼𝑁𝑁𝑅𝑅

 ∑
�𝑥𝑥𝑟𝑟− 𝑣𝑣𝑗𝑗�

2

𝜂𝜂𝑖𝑖
 ] 𝑟𝑟 ∈ 𝑁𝑁𝑖𝑖

𝑟𝑟≠𝑖𝑖 

1
𝑚𝑚−1

1+∑ [ 
�𝑥𝑥𝑖𝑖− 𝑣𝑣𝑗𝑗�

2

𝜂𝜂𝑖𝑖
+ 𝛼𝛼𝑁𝑁𝑅𝑅

 ∑
�𝑥𝑥𝑟𝑟− 𝑣𝑣𝑗𝑗�

2 

𝜂𝜂𝑖𝑖
] 𝑟𝑟 ∈ 𝑁𝑁𝑖𝑖

𝑟𝑟≠𝑖𝑖 

1
𝑚𝑚−1

𝐶𝐶
𝑗𝑗=1

                                                                                                                                                                           (8) 

 
and it satisfies the following condition given as eq. (4), (5) and (6). 

In equation (8)   
1
𝑁𝑁𝑅𝑅
∑ 𝑥𝑥𝑟𝑟𝑟𝑟 ∈ 𝑁𝑁𝑖𝑖  in the numerator is a neighbour average grey level value around 𝒙𝒙𝒊𝒊 within a window.  

PCM-S Algorithm includes the steps as follows: 
Step 1: Assign mean values for each class, 
Step 2: Assign the value of degree of fuzziness m>1, parameter ‘𝛼𝛼’ and convolution window size (𝑁𝑁𝑅𝑅), 
Step 3: Compute the regularization parameter 𝜂𝜂𝑖𝑖 from eq. (3), 
Step 4: Compute the membership matrix  𝑢𝑢𝑗𝑗𝑗𝑗 from eq. (8), 
Step 5: Assign final class to each pixel.  
 

3. Mathematical concept of PCM-S with ADPLICM algorithm 
 

Zhang et al [17] have used Local Similarity Measure based on Pixel Spatial Attraction Model in Adaptive Fuzzy 
Local Information c-means which adaptively determines the weighting factors for neighboring, the same way we 
have been applied for PCM-S with ADPLICM based fuzzy classifier.   

Pixel Spatial Attraction between two pixels can be defined as in eq. (9): 
 
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖(𝑘𝑘) =

𝑢𝑢𝑘𝑘𝑘𝑘 × 𝑢𝑢𝑘𝑘𝑘𝑘  

𝑑𝑑𝑗𝑗𝑗𝑗
2                                                                                                                                               (9) 

 
where 𝑑𝑑𝑗𝑗𝑗𝑗 is a spatial Euclidean distance between two pixels i and j. Further Zhang et al [17] proposed  similarity 
measures to provide a well suited balance between the insensitiveness to noise and effectiveness of preserving the 
image details. Based on the concept of local spatial correlation between pixels in image, a novel local similarity 
measure Sir has been introduced to incorporate both local information which is defined as in eq. (10):  

 

𝑆𝑆𝑖𝑖𝑖𝑖 = �𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 ,   i ≠ r
0,         𝑖𝑖 = 𝑟𝑟                                                                                                                                                 (10) 

𝑟𝑟 ∈ 0 < (𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑟𝑟)2  +  (𝑦𝑦𝑖𝑖 −  𝑦𝑦𝑟𝑟)2 ≤ 2𝐿𝐿−1                                                                                                          (11) 
 

where, i depicts the center pixel of local window, rth pixel is the neighborhood pixel, (𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑟𝑟) and (𝑦𝑦𝑖𝑖 −  𝑦𝑦𝑟𝑟) 
denote the coordinates of pixel i and r respectively. In this paper, ADPLICM is introduced for supervised 
classification and to incorporate local spatial and gray level information into objective function of PCM. The 
objective function of PCM-S with ADPLICM is represented as in eq. (12): 

  
𝐽𝐽𝑚𝑚 = ∑ ∑ (𝑢𝑢𝑘𝑘𝑘𝑘)𝑚𝑚𝐶𝐶

𝑘𝑘=1
𝑁𝑁
𝑖𝑖=1 ‖𝑥𝑥𝑖𝑖 −  𝑣𝑣𝑘𝑘‖2 + ∑ 𝜂𝜂𝑖𝑖𝑁𝑁

𝑖𝑖=1 ∑ (1 − 𝑢𝑢𝑖𝑖𝑖𝑖)𝑚𝑚𝐶𝐶
𝑘𝑘=1 + 𝛼𝛼

𝑁𝑁𝑅𝑅
∑ ∑ (𝑢𝑢𝑗𝑗𝑗𝑗)𝑚𝑚𝐶𝐶

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1  ∑ || 𝑥𝑥𝑟𝑟 − 𝑣𝑣𝑗𝑗  ||2 𝑟𝑟 ∈ 𝑁𝑁𝑖𝑖 +

 ∑ ∑ (𝑢𝑢𝑘𝑘𝑘𝑘)𝑚𝑚𝐶𝐶
𝑘𝑘=1

𝑁𝑁
𝑖𝑖=1

1
𝑁𝑁𝑅𝑅

 ∑ (1 − 𝑆𝑆𝑖𝑖𝑖𝑖)𝑟𝑟 ∈ 𝑁𝑁𝑖𝑖
𝑟𝑟≠𝑖𝑖 

‖𝑥𝑥𝑟𝑟 −  𝑣𝑣𝑘𝑘‖2              (12)  

 
The calculation of membership partition matrix is performed as follows in eq. (13) 
 
𝑢𝑢𝑘𝑘𝑘𝑘 = 1

1+ ∑

⎣
⎢
⎢
⎢
⎢
⎡�𝑥𝑥𝑖𝑖− 𝑣𝑣𝑘𝑘�

2

𝜂𝜂𝑖𝑖
+ 𝛼𝛼𝑵𝑵𝑹𝑹

 ∑ (𝟏𝟏−𝑺𝑺𝒊𝒊𝒊𝒊)𝒓𝒓 ∈ 𝑵𝑵𝒊𝒊
𝒓𝒓≠𝒊𝒊 

�𝑥𝑥𝑟𝑟− 𝑣𝑣𝑘𝑘�
2

𝜂𝜂𝑖𝑖

�𝑥𝑥𝑖𝑖− 𝑣𝑣𝑗𝑗�
2

𝜂𝜂𝑖𝑖
+ 𝛼𝛼𝑵𝑵𝑹𝑹

 ∑ (𝟏𝟏−𝑺𝑺𝒊𝒊𝒊𝒊)𝒓𝒓 ∈ 𝑵𝑵𝒊𝒊
𝒓𝒓≠𝒊𝒊 

�𝑥𝑥𝑟𝑟− 𝑣𝑣𝑗𝑗�
2

𝜂𝜂𝑖𝑖 ⎦
⎥
⎥
⎥
⎥
⎤

1
𝑚𝑚−1

𝑐𝑐
𝑗𝑗=1

                                                                                                                                              (13) 

 
and it satisfies the following condition given as eq. (4), (5) and (6). 

The flowchart of (PCM-S with ADPLICM) algorithm is shown in Fig. 1. The implementation includes 
following four steps; 
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Step 1: Assign mean values for each class. 
Step 2: Assign the value of fuzzification factor m and the local window. 
Step 3: Calculate regularization parameter  𝜂𝜂𝑖𝑖 from eq. (3) and local similarity measures Sir from equation (10), 
Step 4: Calculate class centers and final membership matrix uki from eq. (13), 
Step 5: Assign final class to each pixel.  
In this paper, we are introducing the same concept by incorporating local information in characterizing the 

spatial correlation between pixels in the image. Zhang et al [17] said: “ For two pixels i and j, their attraction w.r.t. 
the kth class is proportional to their membership value 𝑢𝑢𝑘𝑘𝑘𝑘 and 𝑢𝑢𝑘𝑘𝑘𝑘 and inversely proportional to the square of the 
spatial distance between the two pixels”. 

 

 
 

Fig.1. Flowchart of the proposed PCM-S with ADPLICM algorithm 
 

4. Experimental results 
 

In this section results of supervised PCM, PCM-S and PCM-S with ADPLICM algorithms has been compared. 
Base classifier PCM and PCM-S has been optimized using mean membership difference (MMD). MMD is an 
independent approach for the stability of concerned class by calculating the mean difference of membership value 
of concerned class and other classes of pure pixel [18]. In Fig. 2, effect of variation of fuzzification factor (m) has 
been compared for Wheat in PCM and PCM-S algorithms. Fuzzification factor (m) has been varied with a 
difference of 0.2 in case of FORMOSAT-2 satellite imagery. The value of fuzzification factor (m) at which MMD 
value is high indicates the optimization point of base classifier. 

 
 

Fig. 2. Mean Membership Difference Plot: Wheat Class 
 

In this experiment 8 m resolution multispectral Formosat-2 Image (1333 x 1372 pixels) is tested in which 1% 
Salt & Pepper random noise were added separately in the original image (1333 x 1372 pixels). Original Image 
(1333 x 1372 pixels) and Noisy Image (1333 x 1372 pixels) have been classified using PCM, PCM-S and PCM-S 
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with ADPLICM in supervised way. The difference between Original classified image and Noisy classified image 
have been calculated using RMSE. RMSE is basically calculated by measuring the difference between original 
classified image and noisy classified image. PCM-S with ADPLICM algorithm is removed the noise effectively 
by incorporating local information. Fig. 3 (a) shows the Standard FCC of Formosat-2 image (1333 x 1372 pixels), 
Haridwar Site, Uttarakhand (29°55’36.94” N, 78°6’ 16.37” E to 29°48’37.30” N, 78°14’55.13” E).  Fig. 3 (b), (c) 
and (d) shows classified image of Wheat Class through PCM, PCM-S and PCM-S with ADPLICM algorithm 
respectively. 

Table1 displays the quantitative results. As mentioned in Table 1, PCM-S with ADPLICM has less RMSE 
RMSE means the effect of Noisy immunity is high. The RMSE of PCM, PCM-S and PCM-S with ADPLICM are 
0.081, 0.069 and 0.066 respectively. 
 

               
                                             (a)                                                                                    (b) 

            
                                        (c)                                                                                           (d) 

Fig. 3.  (a) Standard FCC of Formosat-2 image (1333 x 1372 pixels), Haridwar Site, Uttarakhand; (b) Classified 
Image- Wheat Class (PCM), (c) Classified Image- Wheat Class (PCM-S), (d) Classified Image- Wheat Class 
(PCM-S with ADPLICM) 

 
Table 1. RMSE of algorithms 

Algorithm RMSE  
PCM 0.081  
PCM-S 0.069  
PCM -S with ADPLICM 0.066  

 
 
5. Conclusion 
 

In this paper, a novel PCM-S with ADPLICM algorithm was introduced for image classification and overcome 
the disadvantages of PCM and PCM-S algorithms. This is achieved by introducing parameter ’𝛼𝛼’and ‘Sir’ in PCM-
S with ADPLICM to incorporate local information and to supervise the effect of neighbors terms which makes the 
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PCM-S with ADPLICM algorithm able to overcome the limitation of conventional PCM and PCM-S. Experiment 
was conducted on FORMOSAT-2 multispectral image to demonstrate the performance of PCM-S with ADPLICM 
algorithm compared to PCM and PCM-S. In case of PCM-S with ADPLICM, RMSE is minimum which means 
classified image is least effected by noise. 
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