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Abstract: Tire vertical stiffness is influenced by many factors. The inflation pressure, tire dimension, and usage 

of run-flat tire are considered in this paper. Robust multi-objective optimization technique is used to optimize the 

suspension performance considering the variation of the tire vertical stiffness. Three objective functions, 

discomfort, road holding, and working space are used to evaluate the dynamic behavior of the suspension 

considering a two-degree-of-freedom quarter-car model excited by a random road profile. The Pareto-optimal 

solutions in terms of suspension spring stiffness and damping coefficient are obtained and compared with the one 

computed by means of a deterministic approach. Solutions obtained by means of the robust optimization method 

are proven to be less sensitive to the possible variations of the tire vertical stiffness without influencing 

significantly the expected performance.  

Keywords: Robust optimization; Multi-objective optimization; Passive suspension; Tire vertical stiffness; Run-

flat tire.

 

 

1. Introduction 
 

Multi-objective optimization approaches are widely used to improve the vehicle performance. In particular, 

referring to the design of suspension systems, the dynamic behavior of passive and active suspensions has been 

optimized in [1-4]. On the basis of simple analytical models, these studies provide a useful guidance on selecting 

the optimal suspension parameters to maximize the vehicle performances in terms of both comfort and handling. 

However, in real-world situations, mechanical components are affected by uncertainties and their behavior may 

not be exactly the same as the expected one. In the case of suspension systems, spring stiffness and damping 

coefficient may differ from their nominal values due to uncertainties related to the manufacturing process [5, 6]. 

Moreover, it is well recognized in the literature, that solutions obtained from deterministic optimization are more 

sensitive to uncertainties on the suspension parameters [7]. To overcome this limitation, multi-objective robust 

optimization has been successfully employed in the design of suspension systems [8-10]. 

Tire behavior is outmost important for the vehicle active safety [11] and it plays a crucial role in defining 

suspensions behavior. Given its importance, it is easy to understand that any deviation from the nominal behavior 

strongly affects the performance of the suspension system (and of the entire vehicle). The vertical stiffness of the 

tire for instance, strongly depends on the inflation pressure and can assume significantly different values even 

within the range of allowable tire pressures. The structure of the tire itself is another important parameter that 

affects its vertical stiffness. If run-flat tires are considered, a higher vertical stiffness is shown if compared with 

conventional tires with the same size. In addition, the wide range of optional tire size provided by vehicles 

manufactures can also lead to different tire vertical stiffness.  

As both comfort and handling are sensitive to variations of tire vertical stiffness [1], the present paper aims at 

analyzing the problem of discomfort, road holding, and working space minimization in a multi-objective robust 

optimization framework. The simple two degrees of freedom (DOF) quarter car model is employed to describe the 

vertical dynamics of the vehicle running on rough surfaces; such a model, despite its simplicity, provides a 

reasonable accuracy in modelling the vehicle dynamic behavior in the vertical direction [12]. Suspension spring 

and damping coefficients are considered as design parameters to be optimized; multi-objective robust optimization 

approach is applied by accounting for uncertainty sources affecting the tire vertical stiffness parameter. 

The paper is organized as follows. Firstly, the mathematical quarter-car model is introduced and described in 

section 2. Then in section 3, the deterministic and robust multi-objective optimization approaches are described 

and the equations of the objective functions are derived. Finally, in section 4 the Pareto-optimal solutions obtained 

with the two optimization approaches are presented and discussed. 
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2. Vehicle model 
 

The simple quarter-car model shown in Figure 1 is employed for describing the vertical motion of a vehicle 

subject to a road irregularity excitation [1]. The model consists of the unsprung mass (𝑚1), sprung mass (𝑚2), tire 

vertical stiffness (𝑘1), external road excitation (r). Suspension stiffness and damping are defined by 𝑘2 and 𝑟2 

respectively. 

 

 

Figure 1. Quarter-car model. 

 

The equations of motions of the quarter-car model are given in Equation (1), 

 

𝑚1𝑥̈1 − 𝑟2(𝑥̇2 − 𝑥̇1) − 𝑘2(𝑥2 − 𝑥1) + 𝑘1(𝑥1 − 𝑟) = 0 

𝑚2𝑥̈2 + 𝑟2(𝑥̇2 − 𝑥̇1) + 𝑘2(𝑥2 − 𝑥1) = 0                                                                                                               (1) 

 

Road irregurality (r) can be described by a random variable defined by a stationary and ergodic stochastic 

process with zero mean value [13]. The power spectral density (PSD) of the process can be derived either by 

experimental data, or by analytical formulae available in the literature. Among many formulations of the PSD 

available for example in [14], the single slope PSD defined by Equation (2) has been selected 

 

𝑆𝑟(𝑠) =
𝐴𝑏𝑣

𝜔2                                                                                                                                                              (2) 

 

where 𝐴𝑏 is a parameter that accounts for the road roughness, while 𝑣 represents the vehicle velocity. A typical 

compact sport car is considered as the reference vehicle and the relative parameters are summarized in Table 1.  

 

Table 1. Data of reference vehicle, running condition, and bounds for the design variables. 

Parameter Unit Reference value Lower bound Upper bound 

𝑚1 kg 31 - - 

𝑚2 kg 229 - - 

𝑘1 N/m 250230 - - 

𝑘2 N/m 25000 0 80000 

𝑟2 Ns/m 1000 0 5000 

𝐴𝑏 m 6.9e-6 - - 

𝑣 m/s 20 - - 

 

3. Multi-objective optimization 
 

Multi-objective optimization approaches have been employed to find optimal values of suspension stiffness 𝑘2 

and damping 𝑟2, denoted as design variables in the following. The objective functions to minimize are related to 

vehicle comfort and handling. In the following subsections a multi-objective optimization (MOO) problem is 

firstly formulated in the deterministic framework and then robustness of the system is considered by adding a 

source of uncertainty in the tire vertical stiffness 𝑘1.     

 

3.1. Deterministic formulation 
A general MOO problem can be mathematically formulated as 
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where 𝐅 is the vector of objective functions, 𝐱 is the vector of deign variables, and 𝐆 is the vector of constraints. 

Referring to the problem analyzed in this paper, the design variables to be optimized are the suspension 

equivalent stiffness 𝑘2 and damping 𝑟2; such design variables vary within a prescribed range, the relative lower 

and upper bounds are reported in Table 1. 

Objective functions are defined basing on the outputs of the quarter-car model. The outputs are the vehicle body 

vertical acceleration (𝑥̈2), dynamic tire load (𝐹𝑧), and relative displacement between wheel and vehicle body (𝑥2 −
𝑥1). The objective functions to be minimized are the standard deviation of each output, namely, discomfort (𝜎𝑥̈2

), 

road holding (𝜎𝐹𝑧
), and working space (𝜎𝑥2−𝑥1

), respectively. 

Based on the expressions of the three transfer functions (𝐻𝑙 , 𝑙 = 1,2,3) between the road input and each output, 

which can be found in [1], the PSD of the output can be computed as in [15]. 

 

𝑆𝑙(𝜔) = |𝐻𝑙(𝑗𝜔)|2𝑆𝑟(𝜔)                                                                                                                                    (4) 

 

where 𝐻1  is the transfer function between 𝑟 and 𝜎𝑥̈2
, 𝐻2  is the transfer function between 𝑟 and 𝜎𝐹𝑧

, 𝐻3  is the 

transfer function between 𝑟 and 𝜎𝑥2−𝑥1
. The PSD 𝑆𝑙(𝜔), 𝑙 = 1,2,3 corresponding to 𝐻𝑙 . 

By substituting Equation (2) into Equation (4) the following relation is obtained 

 

𝑆𝑙(𝜔) = 𝐴𝑏𝑣|𝜔−1𝐻𝑙(𝑗𝜔)|2                                                                                                                                  (5) 

 

Thus, the variance of the random variable whose PSD is 𝑆𝑙 can be derived as 

 

𝜎𝑙
2 =

1

2𝜋
∫ 𝑆𝑙

+∞

−∞
(𝜔)𝑑𝜔                                                                                                                                        (6) 

 

where 𝜎1 , 𝜎2 , and 𝜎3  are the objective functions discomfort (𝐹1), road holding (𝐹2), and working space (𝐹3) 

respectively. The analytical expressions of the objective functions are presented in Equations (8)(9)(10), and they 

are simplified by using the variables in Equation (7). 

 

𝑞 =
𝑚1

𝑚2
,     𝐾 = 𝑘2

(1+𝑞)2

𝑘1𝑞
,     𝑅 = 𝑟2√

(1+𝑞)3

𝑘1𝑚2𝑞
                                                                                                (7) 

 

Discomfort: 

 

𝐹1 = 𝜎𝑥̈2
= √

1

2
𝐴𝑏𝑣𝑓1                                                                                                                                          (8) 

𝑓1 =
1

𝑅
√

𝑚2(1+𝑞)5

𝑘1𝑞
                                      

 

Road holding: 

 

𝐹2 = 𝜎𝐹𝑧
= √

1

2
𝐴𝑏𝑣𝑓2                                                                                                                                           (9) 

𝑓2 = (
𝐾2

𝑅
+

𝑅

𝑞
) √

𝑘1
3𝑞3

𝑚2
3(1+𝑞)3                                     

 

Working space: 

 

𝐹3 = 𝜎𝑥2−𝑥1
= √

1

2
𝐴𝑏𝑣𝑓3                                                                                                                                        (10) 

𝑓3 = (
(𝐾−1)2

𝑅
+

(1+𝑅2)

𝑞𝑅
) √𝑘1

3𝑚2𝑞3(1 + 𝑞)                                                           
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3.2 Stochastic formulation  
Deterministic multi-objective optimization methods have been widely applied to solve mechanical engineering 

problems. However, since some actual parameters values may be different from their nominal values, the objective 

functions would have a stochastic nature. These can happen in the engineering problem, due to the manufacturing 

accuracy, operating conditions, etc.  

The aim of a robust multi-objective optimization approach is to minimize the objective functions values along 

with their sensitivity to perturbations. In a design problem, parameters can be divided into two groups, namely 

design variables (𝑥) which are freely defined by the designers and noise factors (𝑐) not controlled by the designers.  

Let us assume that the uncertainty of design variables (𝑥) and noise factors (𝑐) follow a normal distribution 

which can be described by mean values (𝜇𝑥, 𝜇𝑐 respectively) and standard deviations (𝜎𝑥, 𝜎𝑐 respectively). If all 

the input parameters are also uncorrelated, mean and standard deviation of each objective functions read [16] 

 

𝜇𝐹𝑖
= 𝐹𝑖(𝜇𝑧 , 𝜇𝑐)                                                                                                                                                   (11) 

𝜎𝐹𝑖

2 ≈ ∑ (
𝜕𝐹𝑖

𝜕𝑥𝑗
)2𝑛

𝑗=1 𝜎𝑥𝑗
2 + ∑ (

𝜕𝐹𝑖

𝜕𝑐𝑗
)2𝑚

𝑗=1 𝜎𝑐𝑗
2                                                                                                                (12) 

 

where i=1,2,3 are the deterministic objective functions, m and n are the number of design variables and noise 

factors respectively. 

By assuming that the objective functions follow the normal distribution, a stochastic problem can be converted 

into an equivalent deterministic problem as follows. The designer can choose a level of risk 𝛽𝑖, representing the 

probability that the objective function is less than the computed value. Then, the stochastic objective functions can 

be written as a  

 

𝐹̄𝑖 = 𝜇𝐹𝑖
+ 𝛼𝑖𝜎𝐹𝑖

                                                                                                                                                 (13) 

𝛼𝑖 = 𝛷−1(𝛽𝑖) 

                      

where the function 𝛷−1 is the inverse of the standard normal distribution. 𝛼𝑖 are called robustness index of each 

objective function.  

In this paper, only the variation of the tire vertical stiffness is considered. Therefore, the variance of objective 

function calculated by Equation (12) reads 

 

𝜎𝐹𝑖

2 = (
𝜕𝐹𝑖

𝜕𝑘1
)2𝜎𝑘1

2                                                                                                                                                     (14) 

 

The mean value of the objective function 𝐹𝑖 can be computed by deterministic formulations considering the 

reference vehicle. Thus, the stochastic objective function 𝐹̄𝑖 can be derived by applying Equation (13), and it reads 

 

𝐹̄𝑖 = 𝐹𝑖 + 𝛼𝑖𝜎𝐹𝑖
                                                                                                                                                  (15) 

 

where 𝐹̄𝑖, 𝑖 = 1,2,3  are the stochastic discomfort ( 𝜎̄𝑥̈2
), road holding ( 𝜎̄𝐹𝑧

), and working space ( 𝜎̄𝑥2−𝑥1
), 

respectively. The stochastic objective functions are equivalent to the deterministic objective functions when 𝛼1 =
𝛼2 = 𝛼3 = 0. 

Tire stiffness is controlled primarily by the tire dimension and inflation pressure. Some analytical formulae can 

be found in the literature for its estimation [17-19]. In the following, the expression to estimate the vertical stiffness 

given in [17] is considered. The estimated results have been compared with more than 2000 measured values with 

a wide range of dimensions, and it turns out the expression has reasonable accuracy. 

 

𝑘𝑧 = 0.00028 ⋅ 𝑃 ⋅ √(−0.004𝐴𝑅 + 1.03) ⋅ 𝑆𝑁 ⋅ (
𝑆𝑁⋅𝐴𝑅

50
+ 𝐷𝑅) + 3.45                                                           (16) 

 

where 𝑃 is the tire inflation pressure (kPa), 𝑆𝑁 is the nominal section width (mm), 𝐷𝑅 is the nominal rim diameter 

(mm), and 𝐴𝑅 is the aspect ratio. 

The commonly used tire size nomenclature is described as follows. Take tire size 170/70R14 as an example, 

the 170 is the nominal section width 𝑆𝑁 in millimeters, 70 is the aspect ratio 𝐴𝑅, R means radial construction, and 

14 is the nominal rim diameter 𝐷𝑅 in inches.  

Car manufacturers always provide different optional wheel sizes for the same vehicle. In order to keep a similar 

outer diameter, the tire size should always change together with the wheel. Moreover, the tire may be inflated to a 

pressure different from the nominal suggested value, and the tire inflating pressure also varies in presence of 
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temperature variations and air leakages. Therefore, tire stiffness has to be considered affected by some uncertainty 

level.  

Four tires, of two different sizes and two different constructions, suitable for the reference vehicle are listed in 

Table 2. In the table, the stiffness values computed by Equation (16) in the standard pressure range are reported. 

 

Table 2. Vertical stiffness of standard tires and run-flat tires at different inflation pressure for the reference vehicle. 

Tire size and type 𝑘𝑧 at 200 kPa 

(N/m) 

𝑘𝑧 at 250 kPa 

(N/m) 

175/70 R14 standard 187894 226415 

215/45 R16 standard 215521 260949 

175/70 R14 run-flat 231109 278490 

215/45 R16 run-flat 265091 320968 

 

The vertical stiffness of the run-flat tire (RFT) is higher in order to support the vehicle in the emergency 

condition of low/zero pressure. Based on the tests described in [20], the vertical stiffness of run-flat tire is about 

23% higher than the standard tire.  

Considering the values reported in Table 2, the tire vertical stiffness varies from 187894 N/m to 320967 N/m. 

By assuming that the uncertainty of tire vertical stiffness follows a normal distribution, the mean value and the 

standard deviation of the tire stiffness distribution read 𝜇𝑘1
=254431 N/m and 𝜎𝑘1

=22179 N/m. Substituting the 

value of 𝜎𝑘1
 into Equation (14), the stochastic objective functions can be derived by Equation (15). 

 

4. Pareto-optimal solutions 
 

The Pareto-optimal sets in the design variables domain and objective functions domain are calculated for both 

the deterministic and stochastic formulations. Considering the fact that the Pareto-optimal set of the two objective 

functions is on the border of the projection of the surface that represents the Pareto-optimal set of the three 

objective functions problem [1], the optimization is performed using the ε-constraints method by considering two 

objective functions each time, namely, discomfort-road holding (𝜎𝑥̈2
-𝜎𝐹𝑧

), discomfort-working space (𝜎𝑥̈2
-𝜎𝑥2−𝑥1

),  

working space-road holding (𝜎𝑥2−𝑥1
-𝜎𝐹𝑧

). 

 

4.1 The ε-constraints method to find Pareto-optimal solutions 
The ε-constraints method is one of the most effective technique to calculate the Pareto-optimal set [21]. The 

multi-objective optimization problem is converted into a single-objective minimization problem where the other 

objective functions become constraints, as shown in Equation (17). 

 

min 
x∈S

𝐹1(𝐱) 

𝐹2(𝐱) ≤ ϵ2, 𝐹3(𝐱) ≤ ϵ3, . . . , 𝐹𝑘(𝐱) ≤ ϵk                                                                                                             (17) 

 

where 𝜖𝑖 , 𝑖 = 2, . . . , 𝑘 are the constraints levels for the objective functions. 

Since only two objective functions are considered each time, the minimum for one objective function is 

calculated by varying the constraint level for the remaining objective function. The Pareto-optimal sets are 

calculated and presented in the following subsections. 

 

4.2 Pareto-optimal sets in the design variables domain 
The Pareto-optimal sets in the design variables domain are reported in Figure 2. The same robustness index 

(𝛼1 = 𝛼2 = 𝛼3) is set for all the stochastic objective functions for the sake of simplicity. In order to emphasize the 

difference between the robust optimization and deterministic optimization, the Pareto-optimal sets are obtained by 

considering different 𝛼 values. The results of deterministic optimization are represented by the solid lines, which 

can be obtained by setting 𝛼1 = 𝛼2 = 𝛼3 = 0. The deterministic optimization only considers the mean value of 

the tire stiffness, which corresponds to the lowest robustness level. While the robust optimization also takes the 

uncertainty of tire stiffness into account by setting 𝛼1 = 𝛼2 = 𝛼3 = 3, which corresponds to a level of risk of 

about 0.1 %. 

The points highlighted by markers (○, ☆, +) on the Pareto-optimal sets for the deterministic optimization (𝛼 =

0) and points highlighted by markers (□, ◇, △) on the Pareto-optimal sets for the robust optimization (𝛼 = 3) are 

also highlighted in Figure 3a) and b). The curves (1) and (3) of Figure 2 that go from the origin (𝑟2 = 0,  𝑘2 = 0) 

to the square marker (□) and circle marker (○) represent the Pareto-optimal sets for the discomfort and road holding 

12

L. Yang et al. Journal of Modeling and Optimization 2019;11(1):8-15



 

problem for robust and deterministic formulation respectively. The curves (2) and (4) that go from the square 

marker and circle marker to the upper bound of 𝑟2 (5000 Ns/m) represent the Pareto-optimal sets for the road 

holding and working space problem for robust and deterministic formulation respectively. The line (5) on the 𝑟2-

axis represent the Pareto-optimal sets for the discomfort and road holding problem for both robust and 

deterministic optimization. It is shown that the set of optimal solutions for robust optimization includes the optimal 

solutions for the deterministic optimization. 

 
Figure 2. Pareto-optimal sets in the design variables domain. 

 

4.3 Pareto-optimal sets in the objective functions domain 
The Pareto-optimal sets for the objective functions combination 𝜎𝑥̈2

-𝜎𝐹𝑧
  and 𝜎𝑥2−𝑥1

-𝜎𝐹𝑧
 in the objective 

functions domain can be calculated by substituting the optimal design variables into the expressions of the 

deterministic objective functions in Equations (8)(9)(10). The results are reported in Figure 3. 

  
(a) (b) 

Figure 3. Pareto-optimal sets in the objective functions domain. 

 

As shown in Figure 3, the optimal solutions obtained from the robust optimization (𝛼 = 3) are very similar to 

the ones from the deterministic optimization (𝛼 = 0). The standard deviations of the objective functions due to the 

uncertainty on tire stiffness are highlighted by the vertical and horizontal bars at each marked point. Table 3 

provides a detailed comparison of the mean and standard deviation of discomfort (𝐹1), road holding (𝐹2), working 

space (𝐹3) between the reference vehicle suspension (data in Table 1) and the solutions of the deterministic and 

robust optimization (𝛼 = 0, 3). It can be seen that both the two optimized suspensions have better performance on 
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road holding and working space than the reference vehicle, and optimal results by robust optimization are less 

sensitive to the uncertainty of the tire stiffness.  

 

Table 3. Comparison of mean and standard deviation of discomfort (𝐹1), road holding (𝐹2), working space (𝐹3) 

between the reference vehicle suspension and the minimum of road holding for the considered optimizations. 

 𝐹1 

(m/s2) 

𝐹2 

(N/m) 

𝐹3 

(mm) 

𝜎𝐹1
 

(m/s2) 

𝜎𝐹2
 

(N/m) 

𝜎𝐹3
 

(mm) 

reference suspension 0.74 374.5 4.2 0.02 32.7 0 

solution ○ (𝛼 = 0) 0.94 324.1 2.8 0.04 21.2 0 

solution □ (𝛼 = 3) 1.01 326.0 2.6 0.04 19.9 0 

 

5. Conclusions 
 

In the paper, multi-objective optimization of passive suspension systems has been dealt with. 

A two degree of freedom linear quarter-car model excited by the random irregular road has been used to model 

the vehicle dynamic behavior in the vertical direction. The considered suspension performance indices are road 

holding, discomfort and working space that have to be minimized, the design variables considered are the 

suspension equivalent stiffness and damping.  

In order to optimize the dynamic performance (discomfort, road holding, and working space), the multi-

objective deterministic optimization approach is utilized to find the Pareto-optimal solutions in terms of the design 

variables (suspension spring stiffness and damping coefficient). 

However, the tire vertical stiffness is not constant, due to the use of run-flat tires, different tire sizes, and to the 

variation of tire pressure.  

To account for the uncertainty in tire vertical stiffness, a multi objective robust optimization approach has been 

adopted to solve the problem. The Pareto-optimal solutions have been compared with the solutions obtained by 

considering the deterministic formulation. The results show that the robust optimization method can reduce the 

sensitivity of the optimal solutions to the variation of the tire stiffness, without significantly compromising the 

expected performance.  
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