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Abstract: This paper reveals a computational method using a Residual Power Series Method (RPSM) for the 

solution of fuzzy fractional riccati equation under caputo fractional differentiability. An analytical solution of 

fuzzy fractional riccati equation is obtained as a convergent fractional power series. The procedure produces 

solutions of high accuracy, and some illustrative examples are solved with a different value of orders to show the 

efficiency of the RPSM. 
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1. Introduction  
 

Riccati equation was established after the Italian Nobleman Count Jacopo Francesco Riccati (1676-1754) [1]. 

In the past decades, this type of equation had wide applications in optimal control, random processes, and 

diffusion problems [2-9]. Currently, in light of the growing fractional concept for the order of differential 

equation, fractional riccati equation has appeared  as a  more comprehensive form with a different value of 

derivative order  in many studies [10-15]. Many studies refer to the overlap between the differential equations 

and the foggy logic, whereby these studies have developed solutions to several fuzzy differential equations by 

using traditional numerical methods as Laplace transforms [16], transformation method [17], Taylor method 

[18], Homotopy [19] and Adomian decomposition [20]. Recently, the broader formula of differential equations 

has included the fractional logic of derivative and the fuzzy logic in its terms. Hence, several studies have 

developed traditional methods to find solutions to fuzzy fractional differential equations [21-23]. Residual Power 

Series Method (RPSM) was developed by [24] to solve the fuzzy differential equations and [25] used the same 

method to solve the Fractional Riccati Equation (FRE) and was extended for the implementation of RPS. Hence, 

this paper will solve the Fuzzy Fractional Reccati Equation (FFRE). Therefore, we consider the next form of 

FFRE as follows: 

 

{
𝑫𝒕

𝜷
𝒚(𝒕) + 𝒂𝒚(𝒕) + 𝒃𝒚(𝒕) = 𝒄, 0 < 𝛽 ≤ 1, 0 ≤ 𝒕 ≤ 𝑹,

𝒚(𝟎) = 𝒅
                                                 (1)   

Where 𝑎, 𝑏 and 𝑐 are constants, d is a fuzzy triangular number and 𝐷𝑡
𝛽

 is the Caputo fractional derivative for 

order 𝛽. It can be observed that Eq. (1) is a general formulation of FFRE, whereby the initial value d is a fuzzy 

number. 

The rest of the paper is organized as follows: A general introduction about RPS and FFRE is introduced. 

Section 2 provides the main definitions about fractional calculus, fuzzy numbers. Section 3 presents RPSM for 

solving FFRE. Section 4 introduces two numerical examples to demonstrate the effectiveness of RPSM. The 

conclusion of the study is given in section 5.  

 

2. Main definitions  
 

This section contains briefly the main definitions of caputo fractional derivatives and fuzzy numbers. 
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Definition 1 [26]. The left Caputo fraction derivative is defined as: 

𝐷𝑡∈[𝑎,𝑏]
𝑐,𝛽

𝑦(𝑡) =
1

𝛤(⌈𝛽⌉−𝛽
∫ (𝑡 − 𝜏)⌈𝛽⌉−𝛽−1𝑡

𝑎
𝑦(⌈𝛽⌉)𝜏 𝑑𝜏.                                                    (2) 

Definition 2 [26]. The right Caputo fraction derivative is defined as: 

𝐷𝑡∈[𝑎,𝑏]
𝑐,𝛽

𝑦(𝑡) =
(−1)⌈𝛽⌉

𝛤(⌈𝛽⌉−𝛽
∫ (𝑡 − 𝜏)⌈𝛽⌉−𝛽−1𝑡

𝑎
𝑦(⌈𝛽⌉)𝜏 𝑑𝜏.                                             (3) 

Definition 3 [27]: Let 𝑢𝐹(𝑡) ∈ 𝑅𝐹
𝑛and 𝑟 ∈ [0, 1]. The 𝑟 − cut of 𝑢𝐹(𝑡) is the crisp set [𝑢𝐹(𝑡)]that contains all 

elements with a membership degree in 𝑢𝐹(𝑡) that is greater than or equal to 𝑟, that is [𝑢𝐹(𝑡)]𝑟 = {𝑡 ∈ 𝑅: 𝑢𝐹(𝑡) ≥
𝑟}. For a fuzzy interval 𝑢𝐹(𝑡), its 𝑟 − cut is closed and bounded in 𝑅. These are denoted  by: 

 [𝑢𝐹(𝑡)]𝑟 = [𝑢1,1𝑟(𝑡), 𝑢1,2𝑟(𝑡)]  

where 𝑢1,1𝑟 = 𝑚𝑖𝑛{𝑡: 𝑡 ∈ [𝑢𝐹(𝑡)]𝑟}  and  𝑢1,2𝑟 = 𝑚𝑎𝑥{𝑡: 𝑡 ∈ [𝑢𝐹(𝑡)]𝑟}  for each 𝑟 ∈  [0, 1].   
Definition 4 [27]: 𝑢𝐹(𝑡) ∈ 𝑅𝐹 , 𝑢𝐹 is triangular if its membership function has the following form: 

0,                                  ,  

,                        ,  

( )

,                        ,

0,                                 .

F
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u t

c t
b t c

c b
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



  
 

 
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 
                                                                         

(4) 

Where it’s 𝑟-cut is simply [𝑢𝐹(𝑡)]𝑟 = [𝑎 + 𝑟(𝑏 − 𝑎), 𝑐 − 𝑟(𝑐 − 𝑏)], for any𝑟 ∈ [0, 1]. 
Definition 5 [28]: A power series expansion of the form 

∑ 𝑐𝑚(𝑡 − 𝑡0)𝑚 𝛽 = 𝑐0 + 𝑐1(𝑡 − 𝑡0)𝛽∞
𝑚=0 + 𝑐2(𝑡 − 𝑡0)2𝛽+. . . . . .,  

Where 0 ≤ 𝑚 − 1 ≺ 𝛽 ≤ 𝑚, 𝑡 ≤ 𝑡0 is called fractional power series PS about = 𝑡0 . 

Theorem 1: Supposes that f has a FPS representation at 𝑡 = 𝑡0 of the form 

 𝐹( 𝑡) = ∑ 𝑐𝑚(𝑡 − 𝑡0)𝑚𝛽 , 0 ≤ 𝑚 − 1 ≺ 𝛽 ≤ 𝑚, 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑅∞
𝑚=0   

If 𝐷𝑚𝛽𝑓(𝑡) is continuous on (𝑡0, 𝑡0 + 𝑅) for m∈N, then  𝑐𝑚 =
𝐷𝑚𝛽𝑓(𝑡0)

𝛤(𝑚𝛽+1)
 and R is the radius of convergence. 

Next, the details of the derivation of residual power series solution to the Fractional Riccati Equation are 

presented. 

 

3. Residual power series method for solving fuzzy fractional Riccati equations  
 

For solving FFREs, RPSM is used to solve FREs [25]. 

Firstly, we consider the new form of general FFREs as follows: 

{
𝐷𝑡

𝛽
𝑦(𝑡) + 𝑎𝑦(𝑡) + 𝑏𝑦(𝑡) = 𝑐, 0 < 𝛽 ≤ 1, 0 ≤ 𝑡 ≤ 𝑅,

𝑦(0) = 𝑑
                                               (5) 

Where 0<𝛿 ≤ 1,0 ≤ 𝑡 <R, and 𝑑 = (𝑑𝐹1
, 𝑑𝐹2

, 𝑑𝐹3
) is a fuzzy triangular.  

By applying the fuzzy set theory, the next form for Eq. (5) is obtained: 

{

𝐷𝑡
𝛽

𝑦𝐹1
(𝑡) + 𝑎𝑦𝐹1

(𝑡) + 𝑏𝑦𝐹1
(𝑡) = 𝑐, 0 < 𝛽 ≤ 1, 0 ≤ 𝑡 ≤ 𝑅,

𝐷𝑡
𝛽

𝑦𝐹2
(𝑡) + 𝑎𝑦𝐹2

(𝑡) + 𝑏𝑦𝐹2
(𝑡) = 𝑐, 0 < 𝛽 ≤ 1, 0 ≤ 𝑡 ≤ 𝑅,

𝑦𝐹1
(0) = 𝑑𝐹1

, 𝑦𝐹2
(0) = 𝑑𝐹2

, 

                                                  (6) 

The RPSM proposes the solution for Eq (6) as Fuzzy Fractional Power Series (FFPS) about the initial point 

𝑡 = 0 of the form.  

𝑦𝐹1
(𝑡) = ∑

𝑎𝐹1,𝑛

𝛤(𝑛𝛽+1)
𝑡𝑛𝛽 , 𝑦𝐹2

(𝑡) = ∑
𝑎𝐹2,𝑛

𝛤(𝑛𝛽+1)
𝑡𝑛𝛽 ,∞

𝑛=0
∞
𝑛=0  0 < 𝛿 ≤ 1,0 ≤ 𝑡 < 𝑅,              

Apparently, according to the fuzzy initial condition using Eq. (4), it yields: 

𝑎𝐹1,0 = (𝑑𝐹2
− 𝑑𝐹1

)𝑟 + 𝑑𝐹1
 and  𝑎𝐹2,0 = 𝑑𝐹3

− (𝑑𝐹3
− 𝑑𝐹2

)𝑟  
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 Secondly, we let 𝑦𝐹1,𝑘(𝑡) 𝑦𝐹2,𝑘(𝑡) to denote the 𝑘 − 𝑡ℎ truncated series of 𝑦𝐹1
(𝑡) and 𝑦𝐹2

(𝑡)  for 𝑘 ≥ 1, which 

can be used to approximate the solution, i.e. 

𝑦𝐹1,𝑘(𝑡) = (𝑑𝐹2
− 𝑑𝐹1

)𝑟 + 𝑑𝐹1
+ ∑

𝑎𝐹1,𝑛

𝛤(𝑛𝛽 + 1)

∞

𝑛=0

𝑡𝑛𝛽 , 

𝑦𝐹2,𝑘(𝑡) = 𝑑𝐹3
− (𝑑𝐹3

− 𝑑𝐹2
)𝑟 + ∑

𝑎𝐹2,𝑛

𝛤(𝑛𝛽 + 1)

∞

𝑛=0

𝑡𝑛𝛽 , 

                     0 ≺ 𝛽 ≤ 1,0 ≤ 𝑡 ≺ 𝑅. 𝛽 ≤ 1,0 ≤ 𝑡 < 𝑅.                                                             (7) 

Thirdly, we define the residual function, 𝑅𝑒𝑠𝑦𝐹1
( 𝑡) and 𝑅𝑒𝑠𝑦𝐹2

( 𝑡) for Eq (6) as:  

 𝑅𝑒𝑠𝑦𝐹1
( 𝑡) = 𝐷𝑡

𝛽
𝑦𝐹1

(𝑡) + 𝑎 𝑦𝐹1
(𝑡) + 𝑏 𝑦𝐹1

2 (𝑡) − 𝑐, 

            𝑅𝑒𝑠𝑦𝐹2
( 𝑡) = 𝐷𝑡

𝛽
𝑦𝐹2

(𝑡) + 𝑎 𝑦𝐹2
(𝑡) + 𝑏 𝑦𝐹2

2 (𝑡) − 𝑐,     

and accordingly , the 𝑘 − 𝑡ℎ residual function ,𝑅𝑒𝑠𝑦𝐹1 ,𝑘( 𝑡) and 𝑅𝑒𝑠𝑦𝐹2 ,𝑘( 𝑡) is  

 𝑅𝑒𝑠𝑦𝐹1 ,𝑘( 𝑡) = 𝐷𝑡
𝛽

𝑦𝐹1,𝑘(𝑡) + 𝑎𝑦𝐹1,𝑘(𝑡) + 𝑏𝑦𝐹1,𝑘
2 (𝑡) − 𝑐, 

𝑅𝑒𝑠𝑦𝐹2 ,𝑘( 𝑡) = 𝐷𝑡
𝛽

𝑦𝐹2,𝑘(𝑡) + 𝑎𝑦𝐹2,𝑘(𝑡) + 𝑏𝑦𝐹2,𝑘
2 (𝑡) − 𝑐                                                             (8) 

It’s clear that, 

𝑙𝑖𝑚𝑘→∞ 𝑅𝑒𝑠𝑦𝐹1 ,𝑘( 𝑡) = 𝑅𝑒𝑠𝑦𝐹1
( 𝑡) = 0, 

𝑙𝑖𝑚𝑘→∞ 𝑅𝑒𝑠𝑦𝐹2 ,𝑘( 𝑡) = 𝑅𝑒𝑠𝑦𝐹2
( 𝑡) = 0

 

 for all 𝑡 ≥ 0. 

 By Caputos sense, the fractional derivative of constant function is zero; therefore,  𝐷𝑡
𝑛𝛽

Res𝑦𝐹1
(𝑡) = 0. Also, 

the fractional derivatives 𝐷𝑡
𝑛𝛽

 of 𝑅𝑒𝑠𝑦𝐹1
( 𝑡) and 𝑅𝑒𝑠𝑦𝐹1 ,𝑘( 𝑡) match at t =0 for each n =0, 1, 2, …, k. Also 

𝐷𝑡
𝑛𝛽

𝑅𝑒𝑠𝑦𝐹2
( 𝑡) = 0 . Also, the fractional derivatives 𝐷𝑡

𝑛𝛽
  of 𝑅𝑒𝑠𝑦𝐹2

( 𝑡) and 𝑅𝑒𝑠𝑦𝐹2 ,𝑘( 𝑡) match at t =0 for each 

n =0, 1, 2, …, k.  

Fourthly, to obtain the value of the coefficient 𝑎𝐹1,𝑖 , 𝑖 = 1,2,3, . . . 𝑘 and  𝑎𝐹2,𝑖 , 𝑖 = 1,2,3, . . . 𝑘   in Eq. (6), we 

substitute k - th truncated series 𝑦𝐹1
(𝑡) and 𝑦𝐹2

(𝑡) into Eq. (7) and using the fact [25]. 

𝐷𝑡
(𝑘−1)𝛽

𝑅𝑒𝑠𝑦𝐹1 ,𝑘(0) = 0 and 𝐷𝑡
(𝑘−1)𝛽

𝑅𝑒𝑠𝑦𝐹2 ,𝑘(0) = 0  , 0 < 𝛿 ≤ 1, 𝑘, 1,2,3, . . .,                  (9) 

we obtain an algebric system in 𝑎𝐹1,𝑖  and 
2 ,F ia , 1,2,3,...,i k . 

Fifthly, we explicitly apply the previous discussion to find 𝑎𝐹1,𝑖 and 𝑎𝐹2,𝑖  under our consideration.  first, to 

determine 𝑎𝐹1,1  and  𝑎𝐹1,1  , we consider (k =1) in (7). 

𝑅𝑒𝑠𝑦𝐹1 ,1( 𝑡) = 𝐷𝑡
𝛽

𝑦𝐹1,1(𝑡) + 𝑎 𝑦𝐹1,1 (𝑡) + 𝑏 𝑦𝐹1,1
2 (𝑡) − 𝑐 

𝑅𝑒𝑠𝑦𝐹2 ,𝑘( 𝑡) = 𝐷𝑡
𝛽

𝑦𝐹2,1(𝑡) + 𝑎 𝑦𝐹2,1 (𝑡) + 𝑏 𝑦𝐹2,1
2 (𝑡) − 𝑐   

𝑦𝐹1,1(𝑡) = (𝑑𝐹2
− 𝑑𝐹1

)𝑟 + 𝑑𝐹1
+

𝑎𝐹1,1

𝛤(𝛽+1)
𝑡𝛽  , 𝑦𝐹2,1(𝑡) = 𝑑𝐹3

− (𝑑𝐹3
− 𝑑𝐹2

)𝑟 +
𝑎𝐹2,1

𝛤(𝛽+1)
𝑡𝛽 

 Therefore, 

𝑅𝑒𝑠𝑦𝐹1
,1 (𝑡) = 𝑎𝐹1,1 + 𝑎 (𝑎𝐹1,0 +

𝑎𝐹1,1

𝛤(𝛽+1)
𝑡𝛽) + 𝑏 (𝑎𝐹1,0 +

𝑎𝐹1,1

𝛤(𝛽+1)
𝑡𝛽)

2

− 𝑐 , 

𝑅𝑒𝑠𝑦𝐹2
,1 (𝑡) = 𝑎𝐹2,1 + 𝑎 (𝑎𝐹2,0 +

𝑎𝐹2,1

𝛤(𝛽+1)
𝑡𝛽) + 𝑏 (𝑎𝐹2,0 +

𝑎𝐹2,1

𝛤(𝛽+1)
𝑡𝛽)

2

− 𝑐. 

From Eq. (9) we deduce that 𝑅𝑒𝑠𝑦𝐹1 ,1( 0) = 0 and 𝑅𝑒𝑠𝑦𝐹2 ,1( 0) = 0 . Thus, 

𝑎𝐹1,1 = −𝑎𝐹1,0𝑎 − 𝑏𝑎𝐹1,0
2 + 𝑐 , 𝑎𝐹2,1 = −𝑎𝐹2,0𝑎 − 𝑏𝑎𝐹2,0

2 + 𝑐,  

where 

 𝑎𝐹1,0 = (𝑑𝐹2
− 𝑑𝐹1

)𝑟 + 𝑑𝐹1
 , a0 =d and 𝑎𝐹2,0 = 𝑑𝐹3

− (𝑑𝐹3
− 𝑑𝐹2

)𝑟.  

To obtain 𝑎𝐹1,2 
 and   𝑎𝐹2,2, we substitute the 2-nd truncated series 
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 𝑦𝐹1,2(𝑡) = 𝑎𝐹1,0 +
𝑎𝐹1,1

𝛤(1+𝛽)
𝑡𝛽 +

𝑎𝐹1,2

𝛤(1+2𝛽)
𝑡2𝛽 , 

𝑦𝐹2,2(𝑡) = 𝑎𝐹2,0 +
𝑎𝐹2,1

𝛤(1+𝛽)
𝑡𝛽 +

𝑎𝐹2,2

𝛤(1+2𝛽)
𝑡2𝛽  

into the second residual function 𝑅𝑒𝑠𝑦𝐹1 ,2( 𝑡) and 𝑅𝑒𝑠𝑦𝐹2 ,2( 𝑡) ,i.e., 

𝑅𝑒𝑠𝑦𝐹1,2
( 𝑡) = 𝑎𝐹1,1 +

𝑎𝐹1,2

𝛤(𝛽+1)
𝑡𝛽 + 𝑎 (𝑎𝐹1,0 +

𝑎𝐹1,1

𝛤(𝛽+1)
𝑡𝛽 +

𝑎𝐹1,2

𝛤(2𝛽+1)
𝑡2𝛽) + 𝑏 (𝑎𝐹1,0 +

𝑎𝐹1,1

𝛤(𝛽+1)
𝑡𝛽 +

𝑎𝐹1,2

𝛤(2𝛽+1)
𝑡2𝛽)

2

− 𝑐 

, 

 

𝑅𝑒𝑠𝑦𝐹2,2
( 𝑡) = 𝑎𝐹2,1 +

𝑎𝐹2,2

𝛤(𝛽+1)
𝑡𝛽 + 𝑎 (𝑎𝐹2,0 +

𝑎𝐹2,1

𝛤(𝛽+1)
𝑡𝛽 +

𝑎𝐹2,2

𝛤(2𝛽+1)
𝑡2𝛽) + 𝑏 (𝑎𝐹2,0 +

𝑎𝐹2,1

𝛤(𝛽+1)
𝑡𝛽 +

𝑎𝐹2,2

𝛤(2𝛽+1)
𝑡2𝛽)

2

− 𝑐 

.                        (10) 

By inserting Caputo definition of fractional derivatives 𝐷𝑡
𝛽

 on both sides of Eq (9) and 

solving 𝐷𝑡
𝛽

𝑅𝑒𝑠𝑦𝐹1,2
( 0) = 0  and 𝐷𝑡

𝛽
𝑅𝑒𝑠𝑦𝐹2,2

( 0) = 0   will produce the same result if we just consider the 

coefficient of the variable tβ in the expansion of eq (9) and multiply it by (𝛽 + 1) . This argument is based on the 

fact that by Caputo derivative, 𝐷𝑡
𝛽

(𝑡𝛽) = 𝛤(𝛽 + 1) and 𝐷𝑡
𝛽

(𝑡𝑏)|𝑡=0 = 0, 𝑏 ≻ 𝛽.Thus, we get 

𝑎𝐹1,2 = −(𝑎 + 2𝑏𝑎𝐹1,0)𝑎𝐹1,1     

𝑎𝐹2,2 = −(𝑎 + 2𝑏𝑎𝐹2,0)𝑎𝐹2,1                                                                                                  (11) 

Sixthly, finding the other coefficient 𝑎𝐹1,𝑘  and 𝑎𝐹2,𝑘by considering the k -th residual function 𝑅𝑒𝑠𝑦𝐹1,𝑘
(𝑡) and  

𝑅𝑒𝑠𝑦𝐹2,𝑘
(𝑡) and finding the coefficient of the variable t(k-1)β. The last step is by multiplying the obtained 

coefficient by the factor leads to the following result for k ≥2  

𝑎𝐹1,𝑘+1 = ∑
𝑘𝛤(𝑘𝛿+1)

𝛤(𝑖𝛿+1)𝛤(𝑗𝛿+1)
𝑖+𝑗=𝑘

𝑖,𝑗∈ℤ+

𝑎𝐹1,𝑖𝑎𝐹1,𝑗 − (𝑎 + 2𝑏𝑎𝐹1,0)𝑎𝐹1,𝑘,    

𝑎𝐹2,𝑘+1 = ∑
𝑘𝛤(𝑘𝛿+1)

𝛤(𝑖𝛿+1)𝛤(𝑗𝛿+1)
𝑖+𝑗=𝑘

𝑖,𝑗∈ℤ+

𝑎𝐹2,𝑖𝑎𝐹2,𝑗 − (𝑎 + 2𝑏𝑎𝐹2,0)𝑎𝐹2,𝑘,                                         (12) 

where  

𝑘 = {
−2     : 𝑖 + 𝑗 ≠ 𝑘,
−1     : 𝑖 + 𝑗 = 𝑘.

  

 

4. Numerical examples 
 

Example 1: Consider the following FFREs: 

{
𝐷𝑡

𝛽
𝑦(𝑡) + 𝑎𝑦(𝑡) + 𝑏𝑦(𝑡) = 𝑐, 0 < 𝛽 ≤ 1, 0 ≤ 𝑡 ≤ 𝑅,

𝑦(0) = 𝑑
                                                        (13)       

Where a =1, b =1, c =1, 0< 𝛽 ≤ 1,0 ≤ 𝑡  <R, d =(0,0.25,0.5) is a fuzzy triangular number and  𝛽 =
1.0, 0.9, 0.8, 0.7 and 0.6 for  r =0.  

By applying the fuzzy theory on Eq. (14), we obtain the following system: 

{

𝐷𝑡
𝛽

𝑦𝐹1
(𝑡) + 𝑎𝑦𝐹1

(𝑡) + 𝑏𝑦𝐹1
(𝑡) = 𝑐, 0 < 𝛽 ≤ 1, 0 ≤ 𝑡 ≤ 𝑅,

𝐷𝑡
𝛽

𝑦𝐹2
(𝑡) + 𝑎𝑦𝐹2

(𝑡) + 𝑏𝑦𝐹2
(𝑡) = 𝑐, 0 < 𝛽 ≤ 1, 0 ≤ 𝑡 ≤ 𝑅,

𝑦𝐹1
(0) = 𝑑𝐹1

, 𝑦𝐹2
(0) = 𝑑𝐹2

, 

                                                 (14) 

where 1,  1,  1 a b c   , 0< 1,0 t   <R, 𝑑𝐹1
= 0, 𝑑𝐹2

= 0.5   𝛽 = 1.0, 0.9, 0.8, 0.7 and 0.6. at r =0.   

To solve the Eq. (14), we used the proposed steps in previous section with 10 terms. Then the approximate 

results obtained are compared with the exact solutions at β =1 that are presented in Tables 1-2, where the exact 

solutions for 𝑦𝐹1
(𝑡) and r 𝑦𝐹2

(𝑡) where β =1 is given by: 

𝑦𝐹1
(𝑡) = −

(−1+√5)(−1+𝑒√5𝑥)

−3+√5−2𝑒√5𝑥
, 𝑦𝐹2

(𝑡) =
0.5(−0.180339+1.236068𝑒√5𝑥)

0.055728+𝑒√5𝑥
. . 
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Table 1: Numerical solution for 𝑦𝐹1
(𝑡) , 𝛽 = 1.0, 0.9, 0.8, 0.7 and 0.6, r =0   

x Exact Approximate Errors 

β =1.0 β =0.9 β =0.8 β =0.7 β =0.6 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.094862 0.094862 0.121163 0.152119 0.187030 0.224376 1.705302566×10-13 

0.2 0.179113 0.179113 0.210076 0.241790 0.272633 0.301079 3.28810118×10-10 

0.3 0.252691 0.252691 0.281149 0.307244 0.329889 0.348751 2.663535387×10-8 

0.4 0.316007 0.316007 0.338561 0.357050 0.371259 0.382722 5.878406331×10-7 

0.5 0.369806 0.369800 0.385052 0.395671 0.402207 0.411177 6.355153427×10-6 

 
Table 2: Numerical solution for 𝑦𝐹2

(𝑡),  , 𝛽 = 1.0, 0.9, 0.8, 0.7 and 0.6, r =0   

x  Exact Approximate Errors 

β =1.0 β =0.9 β =0.8 β =0.7 β =0.6 

0.0 0.25 0.25 0.25 0.25 0.25 0.25 0.0 

0.1 0.522642 0.522642 0.528400 0.534856 0.541727 0.548643 7.327471963×10-15 

0.2 0.541098 0.541098 0.547106 0.552879 0.558148 0.562752 1.485223056×10-11 

0.3 0.556086 0.556086 0.560954 0.565095 0.568452 0.571061 1.257874249×10-9 

0.4 0.568222 0.568222 0.571513 0.573946 0.575604 0.5764820 2.91083696×10-8 

0.5 0.578025 0.578025 0.579699 0.580583 0.5806833 0.5796343 3.307333044×10-7 

 
Tables 1 and 2 show a comparison of the approximate solution of 𝑦𝐹1,10(𝑡) and 𝑦𝐹2,10(𝑡) of different values of 

the fractional Caputo derivative order 0<β≤1.0 with exact solutions at β =1.0. It is clear in Tables 1 and 2 that the 

approximate solutions is in high agreement with the exact solution at β =1  

 
Example 2: Consider the following FREs: 

{
𝐷𝑡

𝛽
𝑦(𝑡) + 𝑎𝑦(𝑡) + 𝑏𝑦(𝑡) = 𝑐, 0 < 𝛽 ≤ 1, 0 ≤ 𝑡 ≤ 𝑅,

𝑦(0) = 𝑑
                                                           (15)       

Where a =0.75, b =0.5, c=0.75, 0<β≤1, 0≤t<R, d =(0, 0.1, 0.2) is a fuzzy triangular number and β =1.0, 0.9, 

0.8, 0.7 and 0.6 for 0.r    

By applying the fuzzy theory on Eq. (15), we obtain the following system: 

{

𝐷𝑡
𝛽

𝑦𝐹1
(𝑡) + 𝑎𝑦𝐹1

(𝑡) + 𝑏𝑦𝐹1
(𝑡) = 𝑐, 0 < 𝛽 ≤ 1, 0 ≤ 𝑡 ≤ 𝑅,

𝐷𝑡
𝛽

𝑦𝐹2
(𝑡) + 𝑎𝑦𝐹2

(𝑡) + 𝑏𝑦𝐹2
(𝑡) = 𝑐, 0 < 𝛽 ≤ 1, 0 ≤ 𝑡 ≤ 𝑅,

𝑦𝐹1
(0) = 𝑑𝐹1

, 𝑦𝐹2
(0) = 𝑑𝐹2

, 

                                 (16) 

where a =0.75, b =0.5, c=0. 5, 0<β≤1, 0≤t<R,  𝑑𝐹1
= 0, 𝑑𝐹2

= 0.2   𝛽 = 1.0, 0.9, 0.8, 0.7 and 0.6 at r =0.   

To solve the Eq. (16), we used the proposed steps in previous section with 10 terms. Then the approximate 

results obtained are compared with the exact solutions at β =1 that are presented in Table 3 and 4, where the 

exact solutions for 𝑦𝐹1
(𝑡) and 𝑦𝐹2

(𝑡) whereby β =1 given by: 

𝑦𝐹1
(𝑡) =

0.686141(−1.+1×2.7182811.436141𝑥)

0.313859+2.7182821.436141𝑥 ,   𝑦𝐹2
(𝑡) =

0.686141(−0.649129+2.718281821.436141𝑥)

0.2037351+2.7182821.436141𝑥 .  

 

Table 3: Numerical solution for 𝑦𝐹1
(𝑡) , 𝛽 = 1.0, 0.9, 0.8, 0.7 and 0.6, r =0      

x Exact Approximate Errors 

β =1.0 β =0.9 β =0.8 β =0.7 β =0.6 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.072169 0.072169 0.092834 0.117759 0.146905 0.179714 5.828670879×10-16 

0.2 0.138649 0.138649 0.164649 0.192593 0.221530 0.250307 1.17919563×10-12 

0.3 0.199482 0.199482 0.225647 0.251470 0.275959 0.298287 9.118489297×10-11 

0.4 0.254809 0.254809 0.278310 0.299786 0.31858 0.334436 1.914250203×10-9 

0.5 0.304852 0.304852 0.324092 0.340273 0.353210 0.363249 1.957893259×10-8 
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Table 4: Numerical solution for  𝑦𝐹2
(𝑡),  𝛽 = 1.0, 0.9, 0.8, 0.7 and 0.6, r =0   

x Exact Approximate Errors 

β =1.0 β =0.9 β =0.8 β =0.7 β =0.6 

0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.0 

0.1 0.255279 0.255279 0.270827 0.289377 0.310773 0.334470 1.665334537×10-16 

0.2 0.305276 0.305276 0.324332 0.344498 0.365028 0.385093 1.38811184810-12 

0.3 0.350269 0.350269 0.368931 0.387014 0.403837 0.418914 1.201665434×10-11 

0.4 0.390577 0.390577 0.406840 0.421376 0.433823 0.444127 2.839071367×10-9 

0.5 0.426544 0.426544 0.439359 0.449827 0.457954 0.464077 3.289613287×10-8 

 

Tables 3 and 4 show a comparison of the approximate solution of 𝑦𝐹1,10(𝑡) and 𝑦𝐹2,10(𝑡) of different values of 

the fractional Caputo derivative order 0 < 𝛽 ≤ 1.0 with exact solutions at β =1.0. It is clear through Tables 3 

and 4 that the approximate solution is in high agreement with the exact solution at β =1  

 

5. Conclusions 
 

In this paper, we have studied the solutions of FFREs with Caputo derivatives by RPSM. The proposed steps 

are considerably convenient since it requires less effort and does not need a complex software for the application 

proposed procedure of solution. The accuracy of results obtained in this paper from the illustrated two examples 

indicates the effectiveness of the method. It also refers to the possibility of future research to find solutions to 

various forms of fuzzy fractional equations by using RPSM.  
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