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Abstract: This paper studies the structure preserving (second-order to second-order) model order reduction of 

second-order systems applying the projection onto the dominant eigenspace of the Gramians of the systems. The 

projectors which create the reduced order model are generated cheaply from the low-rank Gramian factors. The 

low-rank Gramian factors are computed efficiently by solving the corresponding Lyapunov equations of the system 

using the rational Krylov subspace method. The efficiency of the theoretical results are then illustrated by 

numerical experiments. 
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1. Introduction 
 

In this paper we consider model order reduction of second-order linear time-invariant (LTI) continuous-time 

system of the form 

                                                              𝑀𝑧̈ (𝑡) + 𝐷𝑧̇(𝑡) + 𝐾𝑧(𝑡) = 𝐻𝑢(𝑡),   
                                                                                                y(t) = 𝐿𝑧(𝑡),                                                           (1) 

                                                         

where 𝑀, 𝐷, 𝐾 ∈ ℝ𝑛×𝑛 are large and sparse matrices,  𝐻 ∈ ℝ𝑛×𝑝 is the input matrix and 𝐿 ∈ ℝ𝑚×𝑛 is the output 

matrix. Correspondingly, 𝑧(𝑡) ∈ ℝ𝑛, 𝑢(𝑡) ∈ ℝ𝑝 and 𝑦(𝑡) ∈ ℝ𝑚 (𝑝, 𝑚 ≪ 𝑛 ) are referred to as state, input and 

output vectors, respectively. Systems of the form (1) arise in various discipline of engineering applications e.g., 

multibody dynamics, mechanics, electromechanics, electrical circuits [1, 2, 3, 4] and so on. In mechanics or 

multibody dynamics, the matrices 𝑀, 𝐷, 𝐾 are known as the mass, damping and stiffness matrices while in the 

simulation of RLCK circuits they are referred to as conductance, capacitance and susceptance matrices, 

respectively. In real-life applications, the number of differential equations and variables in (1) often exceeds tens 

of millions. For instance, mathematical models nowadays are often generated by the finite element method (FEM) 

and most of the systems are composed of large distinct devices which lead the systems to get larger and increases 

the complexity of the systems. Due to the computational complexity, simulation, analysis and controller design of 

such large-scale systems are often infeasible within a reasonable amount of time and limited computational 

resources. Therefore, it is necessary to approximate the system (1) by a lower dimensional system without losing 

the essential dynamics of the original system, which is efficient for practical implementation. In control literature, 

this procedure of approximation is known as model order reduction (MOR) [3, 4]. The most common MOR 

techniques of second-order systems are based on the linearization of (1) by a phase space transformation, e.g., 

introducing a new state variable 𝑥𝑇(𝑡) = [𝑧𝑇(𝑡), 𝑧̇𝑇(𝑡)], resulting in an equivalent first-order state space system 

 

                                                                           𝐸𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),       
                                                                              y(t) = 𝐶𝑥(𝑡),                                                                               (2) 

 

where 𝐸 = [
𝑁 0
0 𝑀

],  𝐴 = [
0 𝑁

−𝐾 −𝐷
],  𝐵 = [

0
𝐻

],  and  𝐶 = [𝐿 0].                                                                                   (3) 

 

Here 𝐸, 𝐴 ∈ ℝ2𝑛×2𝑛, 𝐵 ∈ ℝ2𝑛×𝑝, 𝐶 ∈ ℝ𝑚×2𝑛  and 𝑁 ∈ ℝ𝑛×𝑛 .  Note that 𝑁  could be an arbitrary non-singular 

matrix and most of the cases the preferable choice for 𝑁 is 𝐼𝑛 (𝑛 × 𝑛 identity matrix). Then MOR techniques are 

applied to (2) to get a reduced order model (ROM) 
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                                                                        𝐸̂𝑥̇̂(𝑡) = 𝐴̂𝑥̂(𝑡) + 𝐵̂𝑢(𝑡),           
                                                                           𝑦̂(t) = 𝐶̂𝑥̂(𝑡),                                                                                         (4) 

                                            

where 𝐸̂, 𝐴̂ ∈ ℝ𝑟×𝑟 , 𝐵 ∈ ℝ𝑟×𝑝, 𝐶 ∈ ℝ𝑚×𝑟 and 𝑥̂(𝑡) ∈ ℝ𝑟 (𝑟 ≪ 𝑛) . Unfortunately, this linearization approach 

comes with several drawbacks; for example, the ROM is no longer in second-order structure and hence the 

reconstruction of the second-order structure again is formidable. On the other hand, for engineering applications, 

it is necessary to preserve important properties of the original system such as structure, symmetry, stability, 

passivity and definiteness. Therefore, we are motivated for the second-order to second-order i.e., the structure 

preserving model order reduction (SPMOR) of the second-order system (1).  

Over the years, there has been given a great deal of effort towards the second-order to second-order SPMOR 

and many research articles have been published. In the literature, there are some remarkable techniques for 

SPMOR of second-order systems; such as Balanced truncation (BT) [5, 6], second order Arnoldi method [7], 

moment matching approximation based on Krylov subspace [8]. However, in general, most of the methods do not 

guarantee the stability of the original system. The author in [9] shows that the structure preserving ROM obtained 

by projecting the system onto the dominant eigenspace of the Gramians (PDEG) preserves the stability of the 

original system. In this paper we mainly generalize the idea of PDEG method by creating the projector cheaply 

from the low-rank factors of the Gramians of the system. The Gramian factors are computed by solving the 

continuous-time algebraic Lyapunov equations obtained from the second-order system. To solve such Lyapunov 

equations efficiently, we modify the rational Krylov subspace method (RKSM) which was originated in [10] for 

solving the Lyapunov equations of standard systems. One of the expensive tasks in the RKSM is to solve a large-

scale linear system at each iteration. This paper shows that by splitting such linear systems, the dimension can be 

reduced from 2𝑛 to 𝑛. Moreover, this splitting idea dramatically reduces the overall computational time. The 

convergence of the RKSM is heavily dependent on the choice of good shift parameters. Unlike, the technique in 

[10], this paper also discusses two criterions; namely heuristic and adaptive approaches for the selection of shift 

parameters. We also present a goal oriented termination procedure for the RKSM algorithm which is significant 

in implementation of the PDEG method. To assess the efficiency of our theoretical results, numerical experiments 

are provided. 

Throughout the paper we use the following notations which are commonly used in matrix analysis literature. 

The set of real and complex numbers are denoted by ℝ and ℂ respectively, ℂ− denotes the open left complex half 

plane and 𝑗 is the imaginary unit. The transpose of matrix 𝐴 denoted by 𝐴𝑇, 𝐴∗ its conjugate transpose. The 𝑛 × 𝑛 

identity matrix denoted by 𝐼𝑛.  For a vectors or matrices ‖. ‖2, ‖. ‖∞and ‖. ‖𝐹  denote 2-norm, infinity-norm and 

Frobenius norm respectively. 

 

2. Preliminaries 
 

The purpose of this section is to establish notation and introduce basic concepts from the literature that will be 

used in the remaining of the paper. 

 

2.1. Structure preserving MOR 
We assume that the system (1) is asymptotically stable i.e., all the eigenvalues of the matrix-pencil 

 

𝜌𝑐(𝜆) =  𝜆2𝑀 + 𝜆𝐷 + 𝐾, 
 

where 𝜆 ∈ ℂ are only in ℂ−. The transfer function of (1) which characterizes the input-output behaviour of the 

system defined by 

                                                                   𝐺 (𝑠) = 𝐿 (𝑀𝑠2 + 𝐷𝑠 + 𝐾)−1𝐻,  
 

where 𝑠 ∈ ℂ. Applying the SPMOR [5, 6, 7, 8] method we want to obtain a ROM 

 

                                                                    𝑀̂ 𝑧̂ ̈ (𝑡) + 𝐷̂ 𝑧̂ ̇ (𝑡) + 𝐾 𝑧̂(𝑡) = 𝐻̂ u(t),  

                                                                                                              𝑦̂ =  𝐿̂ 𝑧̂(𝑡),                                                   (5) 

 

where 𝑀̂, 𝐷,̂ 𝐾 ∈ ℝ𝑘×𝑘 , 𝐻̂ ∈ ℝ𝑘×𝑝, 𝐿̂ ∈ ℝ𝑚×𝑘 and 𝑧̂(𝑡) ∈ ℝ𝑘  (𝑘 ≪ 𝑛). Our goal is to minimize the error between 

the original and reduced models. That is the error ‖𝑦 − 𝑦̂ ‖ or correspondingly ‖𝐺 − 𝐺̂ ‖ should be sufficiently 

small in some norm, where 𝐺̂ (𝑠) = 𝐿̂(𝑀̂𝑠2 + 𝐷̂ 𝑠 + 𝐾 )−1𝐻̂ is the transfer function of the reduced system. 
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2.2. Second-order system Gramians and Lyapunov equations  
The Gramians for the second-order system (1) are defined in [11] see also e.g., [6]. From the system (2), we 

obtain two continuous-time algebraic Lyapunov equations 

 

                                                                       𝐴𝑃𝐸𝑇 + 𝐸𝑃𝐴𝑇 = −𝐵𝐵𝑇  and                                                  (6a) 

                                                                        𝐴𝑇𝑄𝐸 + 𝐸𝑇𝑄𝐴 =  −𝐶𝑇𝐶,                                                          (6b) 
 

where 𝑃 ∈ ℝ2𝑛×2𝑛 and 𝑄 ∈ ℝ2𝑛×2𝑛 are called the controllability and the observability Gramians of the system, 

respectively. Due to the structure of 𝐸, 𝐴 and 𝐵 the controllability Gramian, 𝑃 and the observability Gramian, 𝑄 

can be compatibly partitioned as  

                                                             𝑃 =  [
𝑃𝑝 𝑃𝑜

𝑃𝑜
𝑇 𝑃𝑣

]   and   𝑄 =  [
𝑄𝑝 𝑄𝑜

𝑄𝑜
𝑇 𝑄𝑣

].               

Based on the physical interpretation, the authors in [11] defines 𝑃𝑝, 𝑃𝑉  as the second order controllability 

position, velocity Gramians and 𝑄𝑝 , 𝑄𝑉  as the second order observability position, velocity Gramians, 

respectively. Note that the second-order Gramians are the main ingredient in the PDEG based SPMOR. 

 

2.3. Rational Krylov subspace method for solving the Lyapunov equations 
As mentioned earlier that the PDEG method discussed in this paper computes the projectors from the low-rank 

factors of the Gramians. These low-rank Gramian factors can be computed by solving the Lyapunov equations (6) 

using the Rational Krylov subspace method (RKSM) introduced in [10]. In the following we briefly introduce the 

method for solving the controllability Lyapunov equation (6a). The same procedure can also be applied for solving 

the observability Lyapunov equation (6b). 

Applying the Arnoldi process with a modified Gram-Schmidt (re)orthogonalization procedure, the RKSM 

construct an orthonormal basis, 𝑉𝑚 of  𝑚 dimensional rational Krylov subspace 

 

                        𝐾𝑚(𝐴, 𝐵, 𝜇)  =  𝑠𝑝𝑎𝑛 {(𝐴 − 𝜇1𝐸)−1𝐵 , … , ∏ (𝐴 − 𝜇𝑖𝐸)−1𝐵𝑚
𝑖=1 },                           (7) 

 

where 𝜇𝑖 ∈ ℂ, 𝑖 = 1, … , 𝑚 are the set of shift parameters. We project the second order Lyapunov equation (6a) by 

𝑉𝑚 as projected equation 

                                                                𝑉𝑚
∗(𝐴𝑃𝐸𝑇 + 𝐸𝑃𝐴𝑇 + 𝐵𝐵𝑇)𝑉𝑚 = 0.                                                          (8)  

 

Then we chase an approximate solution in the form 𝑃 ≈ 𝑉𝑚𝑌𝑉𝑚
∗  by imposing Galerkin condition, i.e., the 

residual ℛ = AP𝐸𝑇 + 𝐸PAT + 𝐵𝐵𝑇  be orthogonal to 𝐾𝑚. The matrix 𝑃 can be uniquely determined by solving 

formally the low-dimensional Lyapunov equation  

 

                                                               𝐴𝑚𝑌𝐸𝑚
𝑇 + 𝐸𝑚𝑌𝐴𝑚

𝑇 + 𝑉𝑚
∗𝐵𝐵𝑇𝑉𝑚 = 0,                                                  (9) 

 

where  𝐸𝑚 = 𝑉𝑚
∗𝐸𝑉𝑚, 𝐴𝑚 = 𝑉𝑚

∗𝐴𝑉𝑚 and 𝑌 = 𝑉𝑚
∗𝑃𝑉𝑚. We can solve this low dimensional Lyapunov equation by 

direct techniques such as Bartels Stewart [12] or Hammarling method [13]. Now, since 𝑌 is symmetric and positive 

definite, we can write the approximate solution as 𝑌 = 𝐿𝐿∗ and thus we obtain 𝑃 = (𝑉𝑚𝐿)(𝑉𝑚𝐿)∗ = 𝑅𝑅∗. If we 

take the eigendecomposition of 𝑌: 

                                                           𝑌 =  ΓΛΓ∗ =  [ 𝛤1   𝛤2 ]    [
𝛬1 0
0 𝛬2

]    [
𝛤1

∗

𝛤2
∗]                                             (10) 

and consider that 𝛬1 contains the largest eigenvalues and 𝛬2 contains negligible eigenvalues, then by truncating 

𝛬2 we can assure that the computed 𝑅 contains the smallest number of columns. The summary of RKSM method 

is presented in Algorithm 1. 

 

Algorithm 1: SO-RKSM 

 

Input :  𝐸, 𝐴, 𝐵 as in (3) and shift parameters {𝜇1, 𝜇2, … , 𝜇𝑖𝑚𝑎𝑥
}. 

Output : 𝑅 such that  𝑃 ≈ 𝑅𝑅∗. 

1. Compute 𝜗 =  (𝐴 − 𝜇1𝐸)−1𝐵, 𝑉1 =
𝜗

‖𝜗‖
. 

2. while   𝑚 ≤ 𝑖𝑚𝑎𝑥  do 

3.    Find 𝜗 =  (𝐴 − 𝜇𝑚+1𝐸)−1𝑉𝑚  ; 
4.    Orthogonalize 𝜗 against 𝑉𝑚 to obtain 𝜗𝑚+1 ,  𝑉𝑚+1  = [𝑉𝑚, 𝜗𝑚+1]; 
5.    Solve  𝐴𝑚+1𝑌𝐸𝑚+1

𝑇 + 𝐸𝑚+1𝑌𝐴𝑚+1
𝑇 = −𝐵𝑚+1 𝐵𝑚+1

𝑇 ; 
6.    Compute the norm of the residual; 
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7. Compute  𝑌 =  ΓΛΓ∗ =  [ 𝛤1   𝛤2 ]  [
𝛬1 0
0 𝛬2

]  [
𝛤1

∗

𝛤2
∗]; 

8. Truncate 𝛬2 and construct  𝑅 = 𝑉𝑚+1 𝛤1𝛬1
1/2. 

 

This algorithm can also be used for solving (6b) to compute the low-rank factors of the observability Gramian 

replacing the inputs 𝐸, 𝐴, 𝐵  by 𝐸𝑇 , 𝐴𝑇 , 𝐵𝑇 . In the proceeding section, we present further modifications of this 

algorithm. 

 

3. The PDEG method for MOR of second-order system 
 

The motivation and the procedure of PDEG method can be found in [9]. Here we show how to construct the 

projectors from the low-rank factors of the system Gramians. Let us consider 𝑅 ∈ ℝ2𝑛×𝑟 and 𝑆 ∈ ℝ2𝑛×𝑟 (where 

𝑟 ≪ 2𝑛) as the low-rank factors of 𝑃 and 𝑄, i.e., 𝑅𝑅𝑇 ≈ 𝑃 and 𝑆𝑆𝑇 ≈ 𝑄. The solutions 𝑃 and 𝑄 of the Lyapunov 

equations (6) can always be approximated by their low-rank factors since the right hand side matrices of the 

Lyapunov equations have rank deficiency. This is crucial since computing the low-rank Gramain factors is not 

only computationally cheap but also saves computer memory. Note that the Gramian factors 𝑅  and 𝑆 can be 

computed by the RKSM as discussed above. By splitting 𝑅 and 𝑆 as 

                                                                     𝑅 =  [
𝑅𝑝

𝑅𝑣
]    and   𝑆 =  [

𝑆𝑝

𝑆𝑣
],                                                                                 (11) 

we obtain 𝑃𝑝 ≈ 𝑅𝑝𝑅𝑝
𝑇,  𝑃𝑣 ≈ 𝑅𝑣𝑅𝑣

𝑇  or 𝑄𝑝 ≈ 𝑆𝑝𝑆𝑝
𝑇, 𝑄𝑣 ≈ 𝑆𝑉𝑆𝑣

𝑇, where 𝑅𝑝, 𝑅𝑣 ∈ ℝ𝑛×𝑟 are the low-rank factors of 

the controllability position and velocity Gramians respectively and 𝑆𝑃 , 𝑆𝑣 ∈ ℝ𝑛×𝑟are the low-rank factors of the  

observability position and velocity Gramians, respectively. Now consider the singular value decomposition (SVD) 

of 𝑅𝑝 as  

                                                                            𝑅𝑝 = 𝑈𝑝∑𝑝𝑉𝑝
𝑇 ,                                                                            (12) 

 

where ∑𝑝  =  𝑑𝑖𝑎𝑔(𝜎1 , … , 𝜎𝑟  ) and 𝜎𝑗  ≥  𝜎𝑗+1 for 𝑗 = 1, … , 𝑟 − 1. Therefore, we can write 

 

                                  𝑃𝑝 = 𝑅𝑝𝑅𝑝
𝑇 =  𝑈𝑝∑𝑝

2𝑈𝑝
𝑇  =  [ 𝑈1   𝑈2 ]    [

∑1
2 0

0 ∑2
2]   [

𝑈1
𝑇

𝑈2
𝑇],                                                (13) 

 

which is the eigendecomposition of 𝑃𝑝. Here ∑𝑝
2   is a diagonal matrix which contains the eigenvalues of 𝑃𝑝 with 

decreasing ordered and 𝑈𝑝  is an orthogonal matrix whose columns are the eigenvectors corresponding to the 

eigenvalues of ∑𝑝
2 .  Now we define ∑1

2 = 𝑑𝑖𝑎𝑔(𝜎1
2 , … , 𝜎𝑘

2  ) as the 𝑘 largest eigenvalues of 𝑃𝑝  and construct 

 

                                                                         𝑈𝑘  =  [𝑢1   𝑢2  …  𝑢𝑘],                                                                       (14) 

where 𝑢𝑖;  𝑖 = 1, … , 𝑘 are the eigenvectors corresponding to the eigenvalues 𝜎𝑖
2 such that by considering 

                                                                                    𝑉 = 𝑈𝑘 ,                                                                             (15) 

we get the second-order reduced matrices as follows: 

  

                                      𝑀̂ = 𝑉𝑇𝑀𝑉,  𝐷̂ = 𝑉𝑇𝐷𝑉, 𝐾 = 𝑉𝑇𝐾𝑉,  𝐻̂ = 𝑉𝑇𝐻,  𝐿̂ = 𝐿𝑉.                                                  (16) 

    The above approach formulates a 𝑘 dimensional ROM via projecting the system onto the dominant eigenspace 

of the controllability position Gramian 𝑃𝑝. In short, this procedure is called CP-SPMOR (controllability position 

SPMOR). The same procedure can also be applied to the controllability velocity Gramian 𝑃𝑣, observability position 

𝑄𝑝  and velocity 𝑄𝑣  Gramians, respectively. In those cases, the MOR approaches are called CV-SPMOR, OP-

SPMOR and OV-SPMOR, respectively. The summary of CP-SPMOR is presented in Algorithm 2. 

 

Algorithm 2: CP-SPMOR 

 

Input :  𝑀, 𝐷, 𝐾, 𝐻, 𝐿 and 𝑘. 

Output: 𝑀,̂ 𝐷,̂ 𝐾,̂ 𝐻,̂ 𝐿̂. 
1. Solve (6a) to compute 𝑅 such that 𝑃 ≈ 𝑅𝑅𝑇; 
2. Split 𝑅 as 𝑅𝑝 = 𝑅(1: 𝑛, ∶) and Rv = 𝑅(𝑛 + 1: 𝑒𝑛𝑑, : ); 
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3. 𝑆𝑉𝐷(𝑅𝑃) =  U∑VT =  [ 𝑈𝐾   𝑈𝑛−𝑘  ] [
∑𝑘 0
0 ∑𝑛−𝑘

] [
𝑉𝑘

𝑇

𝑉𝑛−𝑘
𝑇 ]; 

4. Consider 𝑉 = 𝑈𝑘 and construct reduced order matrices as follows: 

         𝑀̂ = 𝑉𝑇𝑀𝑉, 𝐷̂ = 𝑉𝑇𝐷𝑉, 𝐾 = 𝑉𝑇𝐾𝑉, 𝐻̂ = 𝑉𝑇𝐻, 𝐿̂ = 𝐿𝑉. 
 

Note that in each case the corresponding projector 𝑉 can be constructed from their respective low-rank Gramian 

factors. The transformation 𝑉 is a contra-gradient transformation since using this transformation it can be proved 

that the ROM is diagonal [9]. Thus the transformation 𝑈𝑘 in (15) is a balancing transformation. It can be shown 

that the reduced order matrices 𝑀,̂ 𝐷̂ and 𝐾 are all symmetric and the ROM preserves the definiteness as well. 

Since the ROM is symmetric and preserves the definiteness, it is also dissipative. Then according to Bendixons 

theorem [14], the stability of the ROM is guaranteed. 

 

4. Updated SO-RKSM for computing the low-rank Gramian factors 
 

The key ingredient of the PDEG method discussed in above section is the low-rank Gramian factors of the 

system. These Gramian factors can be computed by using RKSM which is summarized in Algorithm 1. In this 

section, we show that how to update this algorithm to increase the efficiency and capability.  

 

4.1. Handling the second order structure 
In Algorithm 1, the main computational effort is to solve the linear systems in steps 1 and 3. Due to the structure, 

these linear systems can be splitted into lower dimensional subsystems which is shown in the following texts. In 

step 1, 𝜗 =  (𝐴 − 𝜇1𝐸)−1𝐵 can be computed by solving the linear system (𝐴 − 𝜇1𝐸)𝜗 = 𝐵, which implies  

 

                                                                             𝜗𝑚 = [
𝜗𝑚

(1)

𝜗𝑚
(2)

],                                                                                (17) 

 

then the linear system in step 3 of dimension 2𝑛 × 2𝑛  is equivalent to 

 

                                          (−𝜇𝑚
2 𝑀 − 𝜇𝑚𝐷 − 𝐾)𝜗𝑚

(1)
= (𝜇𝑚𝑀 + 𝐷)𝑉𝑚−1

(1)
+ 𝑉𝑚−1

(2)
                                              (18) 

                                                                             𝜗𝑚
(2)

=  𝜇𝑚𝜗𝑚
(1)

+ 𝑉𝑚−1
(1)

.                                                                  (19) 

 

Certainly solving the linear system of dimension 𝑛 × 𝑛 is more efficient than the dimension of 2𝑛 × 2𝑛. The 

smaller linear systems can now be solved at low cost by using the sparse direct solver [15]. The resulting 

reformulated techniques are shown in Algorithm 3. 

 

Algorithm 3: SO-RKSM (updated) 

 

Input :  𝑀, 𝐷, 𝐾 as in (1). 

Output: 𝑅 such that 𝑃 ≈ 𝑅𝑅∗. 
1. for 𝑚 = 1, 2, … , 𝑚𝑚𝑎𝑥  do 

2.    if  𝑚 = 1 then 

3.        Solve (−𝜇𝑚
2 𝑀 − 𝜇𝑚𝐷 − 𝐾)𝜗𝑚

(1)
= 𝐻; 

4.        Set 𝜗𝑚
(2)

=  𝜇𝑚𝜗𝑚
(1)

; 
5.   else 

6.        Solve (−𝜇𝑚
2 𝑀 − 𝜇𝑚𝐷 − 𝐾)𝜗𝑚

(1)
= (𝜇𝑚𝑀 + 𝐷)𝑉𝑚−1

(1)
+ 𝑉𝑚−1

(2)
; 

7.        Set  𝜗𝑚
(2)

=  𝜇𝑚𝜗𝑚
(1)

+ 𝑉𝑚−1
(1)

; 

8.        Construct 𝜗 = [
𝜗𝑚

(1)

𝜗𝑚
(2)

] and orthogonalize 𝜗 against 𝑉𝑚 to get 𝜗𝑚+1; 

9.        Update 𝑉𝑚+1 = [𝑉𝑚, 𝜗𝑚+1]; 
10.      Solve  𝐴𝑚+1𝑌𝐸𝑚+1

𝑇 + 𝐸𝑚+1𝑌𝐴𝑚+1
𝑇 = −𝐵𝑚+1 𝐵𝑚+1

𝑇 ; 
11.      Compute the norm of the residual using the proposition 4.3.1; 

12. Compute  𝑌 =  ΓΛΓ∗ =  [ 𝛤1   𝛤2 ]    [
𝛬1 0
0 𝛬2

]     [
𝛤1

∗

𝛤2
∗]; 

13. Truncate 𝛬2 and construct  𝑅 = 𝑉𝑚+1 𝛤1𝛬1
1/2

. 
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4.2. Selection of the shifts 
The convergence speed of the RKSM algorithm is strongly influenced by the selection of shift parameters. The 

author in [10] shows a strategy to compute the shift parameters. However, this approach is not efficient since it 

requires to solve an eigenvalue problem at each iteration to compute the next shift. Therefore, we present two 

efficient shift selection strategies; such as Heuristic [16] and Adaptive [17] approaches. Note that both the 

strategies have been developed and frequently used for implementing the low-rank alternating direction implicit 

iteration (LR-ADI) [3]. Here we investigate them for the RKSM. 

 
4.2.1. Heuristic shifts 

The heuristic shifts which is also known as Penzl shifts in honour of the author was first proposed in [16], where 

𝑘+ ≪ 𝑛  Ritz values of 𝐸−1𝐴 and 𝑘− ≪ 𝑛 reciprocal Ritz values of 𝐴−1𝐸 are obtained using Arnoldi process. 

Although computing the Ritz values is an expensive task, this approach is applicable to the large-scale systems. 

The complete algorithm of the heuristic procedure was presented in [16]. 

 

4.2.2. Adaptive shifts 

Another elegant shift selection strategy is the adaptive approach which was first proposed in [17] and the 

updated version can be found in [18]. This approach is superior to the heuristic approach since it does not require 

to compute the Ritz values. This procedure generates the shifts and update independently by the algorithm itself. 

In this procedure, we first compute a set of initial shifts by projecting the matrix pencil 𝐴 − 𝜆𝐸 onto the range of 

a random matrix. Once the initial set of shifts have been used, we project the matrix pencil onto the range 𝑉𝑖 

generated with the initial set of shifts and compute the eigenvalues of the projected pencil. Note that since our 

system is stable, according the Bendixon's theorem [14], the eigenvalues of the projected pencil lie in ℂ−. We use 

these eigenvalues to compute some desired number of optimal shifts by solving the min-max problem [16] and 

use them as the next set of shifts. We continue this procedure until the algorithm converged to the given tolerance. 

 

4.3. Stopping criteria 
We now concentrate on the stopping criteria of Algorithm 3. We propose two stopping criteria and both of them 

are computationally efficient. The first one investigates the Lyapunov residual and the second one monitors the 

Ritz values of the system. 

 

4.3.1. Residual computations 

The most common stopping criteria for algorithms solving such kind of matrix equations is to terminate when 

the normalized residual norm is significantly small. In the case of Algorithm 3, computing the norm of the residual 

at each step makes the algorithm expensive since the Lyapunov residual 

 

                                                             ℛ = A𝑋̃𝐸𝑇 + 𝐸𝑋̃AT + 𝐵𝐵𝑇                                                                      (20) 

 

itself is a large and dense matrix. The following proposition computes the norm of the Lyapunov residual in an 

elegant and cheap way. 

Proposition 4.3.1: Let the column of  𝑉𝑚 ∈ ℝ𝑛×𝑚  contains the basis of 𝐾𝑚 ,  and 𝑋̂  = 𝑉𝑚𝑌𝑉𝑚
𝑇 be the approximate 

solution of the Lyapunov equation (6a) in 𝐾𝑚. The Frobenius norm of the residual as defined in (20) satisfies  

                 

                                                          ‖ℛ‖𝐹 = ‖𝛯𝛶𝛯𝑇‖𝐹  ,      𝛶 = [
0 1 0
1 0 1
0 1 0

], 

 

where  𝛯 is a upper triangular matrix results from the QR factorization of  

 

                                     𝛹 = [𝜗𝑚+1𝜇𝑚+1    𝐸𝑉𝑚𝑌𝑚𝐻𝑚
−𝑇𝑒𝑚ℎ𝑚+1,𝑚       − (𝐼 − 𝑉𝑚𝑉𝑚

𝑇)𝐴𝜗𝑚+1 ]. 
 

Proof: Let 𝑉𝑚 be an orthogonal matrix whose columns are the basis of the rational Krylov subspace, 𝐻𝑚+1,𝑚 =

[𝐻𝑚; ℎ𝑚+1,𝑚𝑒𝑚
𝑇 ] is the orthogonal cofficient matrix, 𝐷𝑚 = 𝑑𝑖𝑎𝑔(𝜇2, 𝜇3, … , 𝜇𝑚+1). With these notation it was 

shown in [10] that  

                                                      𝑇𝑚: =  𝑉𝑚
∗𝐴𝑉𝑚 = (𝐼𝑚 + 𝐻𝑚𝐷𝑚 − 𝑉𝑚

∗𝐴𝜗𝑚+1 ℎ𝑚+1,𝑚𝑒𝑚
𝑇 )𝐻𝑚

−1. 
 

We start from  (𝐴 − 𝜇𝑖+1𝐸)−1𝜗𝑖 = 𝑉𝑖+1𝐻1:𝑖+1,𝑖, 𝑖 = 1,2, … , 𝑚,  and applying the derivation as discussed in [19] 

we get, 
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                              𝐴𝑉𝑚 = 𝑉𝑚𝑇𝑚 + 𝜗𝑚+1 ℎ𝑚+1,𝑚𝑒𝑚
𝑇 𝐷𝑚𝐻𝑚

−1 − (𝐼 − 𝑉𝑚𝑉𝑚
𝑇)𝐴𝜗𝑚+1 ℎ𝑚+1,𝑚𝑒𝑚

𝑇 𝐻𝑚
−1. 

 

Let 𝑔 = (𝐼 − 𝑉𝑚𝑉𝑚
𝑇)𝐴𝜗𝑚+1 , subtituting 𝐴𝑉𝑚 and 𝑋̂ = 𝑉𝑚𝑌𝑉𝑚

𝑇 in (20) yields 

 

 ℛ = A𝑉𝑚𝑌𝑚𝑉𝑚
𝑇 𝐸𝑇 + 𝐸𝑉𝑚𝑌𝑚𝑉𝑚

𝑇AT + 𝐵𝐵𝑇  

      =  𝐸𝑉𝑚𝑌𝑚𝐻𝑚
−𝑇𝑒𝑚ℎ𝑚+1,𝑚𝜇𝑚+1,𝑚

𝑇 𝜗𝑚+1 
𝑇  − 𝐸𝑉𝑚𝑌𝑚𝐻𝑚

−𝑇𝑒𝑚ℎ𝑚+1,𝑚𝑔𝑇 +  𝜗𝑚+1 𝜇𝑚+1ℎ𝑚+1,𝑚
𝑇 𝑒𝑚

𝑇 𝐻𝑚
−1𝑌𝑚

𝑇𝑉𝑚
𝑇𝐸𝑇 

         −𝑔ℎ𝑚+1,𝑚
𝑇 𝑒𝑚

𝑇 𝐻𝑚
−1𝑌𝑚

𝑇𝑉𝑚
𝑇𝐸𝑇  

     = 𝛹𝛶𝛹𝑇 

 

the  QR factorization of 𝛹 complets the proof. 

Once ‖ℛ‖𝐹  is computed, we check e.g., wheather the normalized residual norm ‖ℛ‖𝐹/𝜑 < 𝜏, where 𝜏 is a 

prescribed tolerance, 0 < 𝜏 ≪ 1. Typical choice of 𝜑 is ‖𝐵𝐵𝑇‖2. However, if ‖𝜑‖ is very small, other reasonable 

choice could be ‖𝐵𝐵𝑇‖2 + 2‖𝐴‖2‖𝑋‖2‖𝐸𝑇‖2. 
 

4.3.2. Focusing on the Ritz values  

Although proposition 4.3.1 computes the Lyapunov residual norm in an efficient way, it is not suitable in all 

cases. Because the reduced order model constructed via the PDEG can still be accurate even if the Lyapunov 

residual is large and dense. In PDEG, since the qualities of interests are the dominant eigenvalues of the Gramians, 

we can keep an eye on the Ritz values of the Gramians with respect to their relative change in contrast to the 

previous iteration. Therefore, the algorithm can be stopped when 

 

                                                              ‖𝜆(𝑚) − 𝜆(𝑚−1)‖
∞

<  𝛿𝜆1
(𝑚)

,                                                                   (21) 

 

where 𝜆(𝑗) = [𝜆1
(𝑗)

, … , 𝜆𝑘
(𝑗)

] is the vector containing the leading 𝑘 eigenvalues at step 𝑗 of Algorithm 3 and 𝛿 is a 

constant (0 < 𝛿 ≪ 1). 
 

5. Numerical experiments   
 

In this section we present PDEG based SPMOR and the SO-RKSM for solving the second-order Lyapunov 

equations numerically. All experiments have been carried out in MATLAB®  R2015a on an Intel®  Core i7-

7700HQ @2.80 GHz CPU with 16.0 GB DDR4 RAM.    

To assess the accuracy of PDEG approach, we present the Bode plots of the transfer function matrices of the 

original and reduced systems for the frequency interval 𝑠 ∈ [𝜔𝑚𝑖𝑛 ,   𝜔𝑚𝑎𝑥 ]. The absolute error plots are presented 

as well. We compute the maximum absolute and relative errors of the original and reduced systems. Here the 

absolute and relative errors are defined by 

  

                                                           ‖𝐺 − 𝐺̂‖
𝐻∞

  and  ‖𝐺 − 𝐺̂‖
𝐻∞

/‖𝐺‖𝐻∞
,                   

 

where the 𝐻∞ -norm is defined by ‖𝐺‖𝐻∞
= 𝑠𝑢𝑝𝜔∈ℝ  ‖𝐺(𝑗𝜔)‖𝐻∞

= 𝜎𝑚𝑎𝑥(𝐺(𝑗𝜔)), 𝜎𝑚𝑎𝑥  is the maximum 

singular value.  

We consider three test examples: the International Space Station model (ISSM), the building model (BM) and 

the triple chain oscillator model (TCOM), see [20, 21] for detailed description. 

Example 5.1. This is a structural model component of the International Space Station so-called part 1R of the 

Russian service module. The system has 𝑛 = 135 states. 

Example 5.2. The is a small building model with 8 floors and each floor has 3 degrees of freedom. Thus, the 

system has 𝑛 = 24 states. 

Example 5.3. The triple chain oscillator is a mechanical system with three coupled chains of masses 

interconnected with springs and dampers. The system matrices 𝑀, 𝐷 and 𝐾 are all symmetric of dimension 𝑛 =
1501. 

We apply the CP-SPMOR and CV-SPMOR to the all three test examples. Table 1 summarizes the speciation 

of the original models, dimension of the reduced models, the maximum absolute and relative errors. Figure 1 

depicts the Bode and absolute error plots of the original and reduced models. Clearly, there is no visual distinction 

in the Bode plots between the original and reduced models. In Figure 1e and 1f, although the Bode plots match 

very well, the absolute errors plots show inaccurateness. The main reason of this inaccurateness is that the low-

rank controllability Gramian factor has not fully converged since the maximal number of iteration is reached. The 

absolute error succeeds this inaccurateness since it is evaluated by the approximate low-rank Gramian factor. 
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However, the reduced model is still satisfactory due to the good matching in the Bode plots. Furthermore, the 

PDEG approach promises the preservation of the stability of the reduced model and for the ISSM example; Figure 

2a represents that the eigenvalues of the exact and reduced models are precisely identical.         

Next we investigate the SO-RKSM for solving the Lyapunov equations. The convergence of the SO-RKSM 

based on the both residual and relative change of the Ritz values have been shown in Figure 2b. Certainly, the 

proposed residual base criterion takes much fewer iteration steps and time compared to the relative change of the 

Ritz values. Moreover, as described in section 4.2, the choice of the shift parameters accelerates the convergence 

speed of the SO-RKSM; Figure 3 shows the iteration steps verses elapsed time of the SO-RKSM for both the 

heuristic and adaptive shifts. 

 

                                                                  

     
   (a) Bode plots: ISSM                                                     (b) Absolute errors: ISSM 

     
    (c) Bode plots: BM                                                      (d) Absolute errors: BM 

    
   (e) Bode plots: TCOM                                                  (f) Absolute errors: TCOM 

  Figure 1: Comparisons of original and reduced systems of different model examples in the frequency domain. 
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Table 1: Model examples, reduced models, absolute and relative errors. 

Example 𝑚, 𝑝 𝑛 𝑟           type   absolute error   relative error 

ISSM     3 ,3      135   20    CP-SPMOR 

   CV-SPMOR 

   2.9534e-04 

   6.8538e-05 

    6.9927e-11 

    5.0855e-11 

BM     1, 1       24   10    CP-SPMOR 

   CV-SPMOR 

   3.0161e-04 

   1.5518e-04 

    4.4176e-11 

    3.9657e-11 

TCOM     1, 1     1501  300    CP-SPMOR 

   CV-SPMOR 

     322.9630 

     115.7057 

    3.9970e-05 

    4.0890e-05 

 

                                   

   
                          (a) Eigenvalues                                                   (b) Convergence history of SO-RKSM 

Figure 2: Stability of PDEG and SO-RKSM convergence history with ISSM. 

                       

 
Figure 3: Comparisons between the heuristic and adaptive shift computation strategies. 

 

6. Conclusions 
 

In this paper we have investigated the structure preserving model reduction based on PDEG method. We have 

shown that the projectors which carry out the PDEG method can be created cheaply from the low-rank factors of 

the system Gramians. To compute the low-rank Gramian factors efficiently, we have reformulated the RKSM. 

Inside the RKSM algorithm, we need to solve a large-scale linear system at each iteration. In this paper we have 

shown how to split the large-scale linear system into small subsystems to accelerate the computation. For better 

convergence of the RKSM, we have investigated two shift parameter computation strategies. Besides, a goal 

oriented stopping criterion of the RKSM has also been proposed. The efficiency and capability of the theoretical 

results have been discussed by numerical experiments using the data of several models. 
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