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Abstract: The dismantling of large concrete structures causes environmental pollution due to the dispersion of 
polluted micro-particles. The purpose of this study is to develop an environmentally friendly demolition method. 
Steam pressure cracking (SPC) is a method that can safely and quickly separate concrete because there is less 
vibration compared to the explosion method. To date, the authors have shown that the direction of cracking in a 
small sample can be controlled by an induction hole. The principle of control is that the elastic wave of 
compression stress generated from the SPC reaction changes to a tensile elastic wave at the induction hole, and a 
crack is initiated. In this study, it was shown that the direction of crack propagation can be controlled by using 
induction holes in large concrete structures that are 1m on each side. Further, in the SPC method, the large amount 
of concrete powder generated by the explosion method is not produced, and there is no risk of secondary 
contamination by fine concrete powder. It was also possible to separate small pieces from the end face of the large 
concrete by SPC and induction holes. The area over which the crack propagated depends on the energy generated 
from the SPC agent, and the relationship was linear. By applying an SPC agent to dismantling large concrete 
structures, we can achieve controlled cracking safely and quickly without any environmental pollution.   
Keywords: Controlled cracking; Steam pressure cracking agent; Large concrete; Induction hole; Elastic wave; 
Surface energy. 

1. Introduction

Dismantling of large concrete structures causes environmental pollution.  The purpose of this study is to
develop a demolition method that does not cause environmental problems. Therefore, the authors focus on the 
separation method using steam pressure cracking (SPC) [1, 2] which has advantages over conventional concrete 
cracking methods such as rapid, safe, and controlled crack propagation [3]. In this study, the crack propagation 
mechanism and controlled cracking characteristics of large concrete structures by an SPC agent were elucidated 
using both theoretical and experimental analysis.   

Concrete structures that can no longer be used due to disasters have become a social problem [4-6] and require 
safe and urgent dismantling. There are three methods for dismantling large concrete structures that have been 
previously utilized. The first is a blasting method that uses explosives such as dynamite [7-12]. In addition, a 
hydraulic rock splitting method that uses a hydraulic cracking machine and a static crushing method that uses non-
explosive demolition agents [13, 14] that are expanded by a hydration reaction have also been used.   

Initially, dynamite containing nitroglycerine was used for blasting. However, dynamite is not currently 
produced in Japan. Currently, “slurry or emulsion explosives”, which are safer than dynamite, are used for blasting. 
Using this method, the size of the object to be demolished is limited because the explosion is accompanied by a 
large shock wave, vibrations, scattering of objects, and high-temperature gas spouting, which can adversely affect 
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the surroundings. Furthermore, the handling of explosives must be authorized by an administrative official, and 
therefore, they cannot be used urgently in the event of a disaster.   

The hydraulic split rock method allows concrete to be demolished quietly because there is no explosive sound. 
On the other hand, because this method uses a large heavy machine called a hydraulic rock split machine, the 
disadvantage is that it cannot be done without sufficient preparation time, size, and scaffolding.  

To crush concrete using a "static crusher agent" the agent is poured into a hole, and the expansion pressure 
generated when it reacts and expands creates a crack in the concrete [13, 14]. The static crusher agent is defined 
as a non-explosive demolition agent, thus worker safety is ensured. However, a disadvantage of this method is that 
it can take a long time for the expansion pressure to increase and a crack to occur in the object. Depending on the 
product, this may take up to 24 hours, so it cannot be used for emergency measures.  

Therefore, in this study, to solve the problems of the conventional method, we developed a controlled cracking 
method that uses an SPC agent. SPC agents are safe chemicals that are also used to inflate car airbags. In this study, 
we showed that this agent can be used to quickly crush large amounts concrete by controlling the cracking direction.  

 
2. Experimental methods 
 
2.1 Concrete test materials 

The typical concrete used in the experiment was cured for more than 3 weeks by mixing cement, sand, gravel, 
and water with a volume ratio of 1:2:4:0.5 into the mould. 

The material properties of the concrete are listed in Table 1. Because the compressive strength of concrete used 
in this study varies widely, compression tests could not be performed on all test pieces. Therefore, we used a 
Schmidt hammer [15, 16] to measure the Schmidt value of the concrete surface, which is then converted into a 
compressive strength of σc. by equation (1) [16].  

 
𝜎𝜎𝑐𝑐 = 0.9294𝑥𝑥 − 1.1219    [N/mm2] [16]                (1)  
 
The shape of the concrete used for the crushing test is shown in Figure 1 (a) and (b). 
 

Table 1. Nominal material properties of concrete used 
Material properties  Value              [unit] 
Compressive Strength, σc 20 ~ 50           [N/mm2] 
Tensile strength, σt  [17] |σt |< |σc /10|        [N/mm2] 
Density, ρ 2.3 ~ 2.5           [g/cm3] 
Elastic Modulus, E  10 ~ 50            [GPa] 
Schmidt values 10 ~ 60            [R] * 
Velocity of elastic wave   4500 ~ 5400       [m/s] * 

* Values measured by the authors 
 

       
Figure 1. Concrete size used; (a) small type, Cylinder; Φ150×150mm, (b) large type, Beam; 1000×1000×500mm. 
 
2.2 Characteristics of the SPC agent 

The chemical composition of the SPC agent used in the experiment is shown in Table 2, and the physical 
properties are listed in Table 3.  

 

(a) (b) 
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Table 2. Chemical composition of the steam pressure cracking (SPC) agent 
Composition materials Mass % 
Alum ( nKAl(SO4)212･H2O ) 50 
Copper (II) oxide (CuO) 38 
Al fine powder 11 
Binder 1.0 

 
Table 3. Physical properties of agent used 

Ignition point 793 K (520 ℃) or higher 
Reaction speed Less than 300 [m/s]  
Rise time to maximum pressure 30~50 [10-3s]  
Sealed combustion pressure 300 MPa  
Volume of gas produced  330 l/kg 
Theoretical energy product with standard mixture  1170 kJ/kg 

 
The agent is ignited by inserting an appropriate amount into the centre of the concrete and heating it to 793 

K(520°C) using the igniter. The agent causes the reaction shown in equation (2), which creates water and heat. 
The water evaporates in a short time, and then the concrete is crushed by the high-pressure steam and elastic waves 
generated by it as shown in Figure 2. 

 
2Al + 9

2
CuO + nKAl(SO4)2･12H2O → 3

2
Al2O3 + 9

4
Cu2O + nKAl(SO4)2 + 12nH2O ↑ +1170 kJ/kg [2]   (2) 

   

    
Figure 2. Controlled cracking of a small concrete piece by the SPC agent [3]. 

 
2.3 Large sample crushing test  

In this test, we examined whether induction holes are effective for controlling cracking using large samples, 
assuming actual structures. Test methods and results in small samples were shown in a previous report [3]. A large 
rectangular test sample was provided with an agent treatment hole at the centre, and an induction hole was 
perforated diagonally. When the induction hole affects the cracking behaviour, the crack occurs diagonally, and if 
there is no induction hole, it is predicted that a crack will occur in a cross shape along the shortest distance. The 
crushing test was carried out under normal atmospheric conditions, and a poly bucket containing water was 
installed on the sample to prevent the steam from leaking out above. Figure 3 illustrates the method used to insert 
the SPC agent into a large concrete test piece. The total amount of SPC agent was divided into four parts of 60 g 
each that were loaded into the central borehole, for a total of 240 g as shown in Table 4. 

 
Table 4. Cracking conditions 

SPC hole Φ×depth [mm] Φ34×270 
Induction holes Φ×depth [mm]  Φ34×260 

Amount of SPC [g] 240(60g×4 pieces) 
Concrete size [mm] D1000×W1000×H500 

Schmidt hammer value [R] 61 
Cracking condition In air, Caver on the SPC hole 

 : Induction hole 

  :SPC agent hole 
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Figure 3. SPC agent insertion into large concrete test pieces 

 
3. Crushing results and discussion 
 
3.1 Crushing results of large concrete sample 

The results of the crushing test are shown in Figure 4. Cracking occurred in three directions. The cracks shown 
in ② and ③ in the figure occurred diagonally along the induction holes. Crack ① did not pass through the open 
induction hole, but a crack occurred along induction hole ④ that filled with mortar and closed. Therefore, it can 
be said that the induction hole method is effective even in a large concrete sample close to the actual structure, and 
the crack can be controlled. It was also shown that the induction holes that were closer had the biggest impact, 
whether open or closed, on crack propagation. It is considered that a hole loaded with mortar also has the same 
effect as an induction hole. For this reason, it can be inferred that a pseudo boundary surface, in which the mortar 
cannot be fully joined, is formed by loading the hole once it is perforated with a different material. It is thought 
that the compressive elastic wave is reflected at the pseudo-boundary surface as well as the free surface and 
becomes a tensile stress wave. 

In addition, it was found that the steel rebar ⑤ contained in the concrete sample used in this test can be cut at 
the same time. The reaction time of the SPC agent was short, and the steel rebar was subjected to impact pulling 
and cut with little elongation. 

In the previous test, the entire sample was crushed by installing an SPC agent hole in the centre of the concrete 
specimen. Here, the concrete was partially chipped off from the end surface of the test piece. In actual construction, 
there are many so-called chipping constructions that partially separate concrete blocks. Previously, impact tests of 
concrete using mechanical systems have been conducted [18-20], but there are no examples of controlling the 
propagation direction of the crack. 

 

 
Figure 4. Concrete cracked by SPC agent 

 

③ 

●：Induction hole 
〇：Repaired hole 

: SPC agent hole 

Broken steel 
 

④ 

⑤ 

② 

① 
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Figure 5 shows the results of the chipping test carried on the cracking conditions of Table 5. Cracking occurred 
from the repair hole without passing through the induction hole, and it was crushed into a T-shape. This is an ideal 
form for chipping. The reason why the crack does not pass through the induction hole is that the generated 
propagation of the crack is caused not by static stress concentration, but by the tensile stress due to the reflected 
elastic wave at the induction hole interface. 

In addition, Figure 5 indicates that it is difficult to induce a tear between induction holes when multiple 
induction holes are not installed coaxially from the SPC agent hole, as shown in Figure 5.   

 
Table 5. Cracking conditions of the chipping test 

 
 
 
 
 
 
 

 
 

 
 

Figure 5. Concrete chipped by SPC 
 
3.2 Elastic wave propagation and cracking 

The controlled cracking phenomenon schematically shown using the elastic wave theory in Figure 6, which 
indicates the arrangement of the SPC and the induction hole, as well as the propagation and reflection of elastic 
waves in large concrete. 

 

Figure 6. Schematic figure of tested concrete that shows the SPC agent, induction hole and repaired hole. The 
elastic wave initiates from the SPC in Figure 6(a) and reflects at the induction hole shown in Figure 6(b). Areas of 
compressive stress are shown in blue, and red areas represent tensile stress. 

SPC hole Φ×depth [mm] Φ34×310 
Induction holes Φ×depth [mm]  Φ34×310 

Amount of SPC [g] 120 g (60g×2 holes) 
Concrete size [mm] D1000×W1000×H500 

Schmidt hammer value [R] 61 
Cracking condition In air  

●：Induction hole 
〇：Repaired hole 

: SPC agent hole 

●：Induction hole 

〇：Repaired hole 

: SPC agent hole 

   : Cracking (a) (b) 
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The SPC cracking phenomena are based on three-dimensional elastic wave propagation; however, to understand 
the phenomena, the authors used the following equation, which is a one-dimensional elastic wave equation [21]: 

 
𝜕𝜕2𝑢𝑢(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡2

− 𝑣𝑣2 𝜕𝜕
2𝑢𝑢(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥2

= 0                        (3) 
 
where 𝑢𝑢 is the displacement produced by SPC, 𝑣𝑣 is the velocity of the elastic wave, 𝑥𝑥 is the distance from the 
induction hole surface, 𝑡𝑡 is the time, and 𝑣𝑣 = �𝐸𝐸 𝜌𝜌 ⁄    (𝐸𝐸:𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑔𝑔′𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝜌𝜌:𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 of concrete) in an 
elastic solid. Concrete is considered a composite elastic solid composed of sand, aggregate, and cement, and has 
homogeneous E and 𝜌𝜌. 

Longitudinal elastic waves are generated by the reaction of the SPC agent. As a general solution of equation 
(3), the following d’Alembert equation is given as: 

 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥 − 𝑣𝑣𝑣𝑣) + 𝑔𝑔(𝑥𝑥 + 𝑣𝑣𝑣𝑣)                     (4) 

 
where 𝑓𝑓(𝑠𝑠), 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔(𝑠𝑠) are arbitrary functions that correspond to the “driving wave” and the “reflected wave”, 
respectively. Equation (4) can be confirmed to be the correct solution when attempting to substitute equation (3) 
[21].  

The functions 𝑓𝑓(𝑠𝑠) and 𝑔𝑔(𝑠𝑠) indicate the displacement of elastic waves that move in opposite directions at 
speeds of +𝑣𝑣𝑣𝑣 and −𝑣𝑣𝑣𝑣, respectively. The driving wave 𝑓𝑓(𝑠𝑠) is related to the reflected wave 𝑔𝑔(𝑠𝑠) at the free 
surface of the induction hole as follows [21]: 

 
𝑓𝑓(−𝑠𝑠) = 𝑔𝑔(𝑠𝑠)                                     (5) 
 
The shapes of 𝑓𝑓(𝑠𝑠) and 𝑔𝑔(𝑠𝑠) correspond to the actual elastic wave that is generated by the SPC compressive 

pressure and can use the Gaussian functions or the wave packet. The peak value corresponds to the maximum 
pressure of the SPC agent, which is approximately 300 MPa,and the time spread is approximately 50 [10-3s]. In 
the future, we would like to determine the elastic wave function form of the SPC agent after measuring accurate 
data. 

The stress 𝜎𝜎 of the elastic body produced by displacement 𝑢𝑢 is expressed by the following equation:  
 
𝜎𝜎(𝑥𝑥, 𝑡𝑡) = 𝐸𝐸･𝑢𝑢′(𝑥𝑥, 𝑡𝑡)                                          (6) 

 
where  𝑢𝑢′(𝑥𝑥, 𝑡𝑡) is the value of the partial deviations for 𝑥𝑥.   
 
𝜎𝜎(𝑥𝑥, 𝑡𝑡) = 𝐸𝐸･𝑓𝑓′(𝑥𝑥 − 𝑣𝑣𝑣𝑣) + 𝐸𝐸･𝑔𝑔′(𝑥𝑥 + 𝑣𝑣𝑣𝑣)                      (7) 
 
Considering  𝑥𝑥 = 0, 𝜎𝜎 = 0 at free surface of the induction hole, as shown in Figure 6. 
 
𝑢𝑢′(𝑥𝑥, 𝑡𝑡)   = 𝑓𝑓′(−𝑣𝑣𝑣𝑣) + 𝑔𝑔′(𝑣𝑣𝑣𝑣) = 0                 (8) 

𝑓𝑓′(−𝑣𝑣𝑣𝑣) = −𝑔𝑔′(𝑣𝑣𝑣𝑣)                                                (9) 
 
Equation (6) indicates that the stress of the driving wave 𝜎𝜎 = 𝐸𝐸 ∙ 𝑓𝑓′(−𝑣𝑣𝑣𝑣)  is compressive; however, the 

pressure of the reflected wave 𝜎𝜎 = −𝐸𝐸･𝑔𝑔′(𝑣𝑣𝑣𝑣) is tensile stress. These phenomena are known as the Hopkinson 
effect, which is applied for dynamic testing [18]. However, no example has been found for controlled cracking in 
concrete.    

The magnitude of the stress σ is dependent on 𝑢𝑢′(𝑥𝑥, 𝑡𝑡) instead of 𝑢𝑢(𝑥𝑥, 𝑡𝑡), which means that the stress is not 
related to the maximum pressure but to the gradient of displacement. In other words, the level of σ depends on the 
speed of the reaction of each chemical agent. The maximum compression pressure of the SPC agent at the centre 
is approximately 3,000 kgf/cm2 (≒300 MPa), and the time scale is approximately 100 [10-3s]. However, the 
explosive pressure is high (10 GPa), and the time scale is small (100μs). The slower reaction times enable the SPC 
agent to control the cracking of the concrete. The authors propose a cracking control condition by using the 
induction hole, 

 
𝜎𝜎𝑐𝑐𝑐𝑐  =  𝐸𝐸･𝑓𝑓′(𝑥𝑥 − 𝑣𝑣𝑣𝑣)   <   𝜎𝜎𝑐𝑐 
 𝜎𝜎𝑡𝑡𝑡𝑡 = −𝐸𝐸･𝑔𝑔′(𝑥𝑥 + 𝑣𝑣𝑣𝑣)   >   𝜎𝜎𝑡𝑡     (10) 
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 where 𝜎𝜎𝑐𝑐𝑐𝑐 is the maximum compressive stress of the driving elastic wave, 𝜎𝜎𝑐𝑐 is the compressive strength of 
the concrete used, 𝜎𝜎𝑡𝑡𝑡𝑡 is the maximum tensile stress of reflected elastic wave near induction hole, and 𝜎𝜎𝑡𝑡 is the 
tensile strength of the concrete used. 

The authors estimated the values of 𝜎𝜎𝑐𝑐 and 𝜎𝜎𝑡𝑡 as – 55 MPa and 5.5 MPa, respectively, in this study.  
The functions 𝑓𝑓′(𝑥𝑥 − 𝑣𝑣𝑣𝑣) and 𝑔𝑔′(𝑥𝑥 + 𝑣𝑣𝑣𝑣) have dimensions of strain, and the values are related to the reaction 

speed of the explosive agent. We can analyse the critical values of 𝑓𝑓′(𝑥𝑥 − 𝑣𝑣𝑣𝑣) by substituting the data given in 
Table 1. 

 
𝑓𝑓′(𝑥𝑥 − 𝑣𝑣𝑣𝑣)    <   𝜎𝜎𝑐𝑐/𝐸𝐸 =−55/30000=−0.18%                     (11) 

𝑔𝑔′(𝑥𝑥 + 𝑣𝑣𝑣𝑣)    <   𝜎𝜎𝑡𝑡/𝐸𝐸 =5.5/30000=0.018%                       (12) 
 
Therefore, to design controlled cracking, it is essential first to select an SPC that has an appropriate reaction 

speed according to the strength of the target material. The values of the displacement gradient of concrete cannot 
be obtained by analytical methods but only by experiments. The authors are applying the results of this research 
to develop a controlled cracking mechanical system for concrete. 
 
3.3 Impact fracture toughness of concrete 

The authors consider that the size of the induction hole required to control the tear propagation is related to the 
fracture toughness value of the concrete. That is, when the Diameter 𝑑𝑑 of the induction hole is set, it is assumed 
that the Crack length 𝑎𝑎𝑐𝑐  generated is expressed by the following formula:  

 
𝑎𝑎𝑐𝑐 = 𝑘𝑘𝑘𝑘                                                 (13) 

 
where 𝑘𝑘 is an experimental constant. If the fracture toughness value of concrete is expressed as 𝐾𝐾Ⅰ𝑐𝑐𝑐𝑐  and the 
tensile stress of the reflected wave is 𝜎𝜎𝑡𝑡, the following equation consists of:  
 
𝐾𝐾Ⅰ𝑐𝑐𝑐𝑐＝𝜎𝜎𝑡𝑡�𝜋𝜋𝑎𝑎𝑐𝑐 = 𝜎𝜎𝑡𝑡√𝜋𝜋𝜋𝜋𝜋𝜋                                   (14) 

𝑑𝑑 =
𝐾𝐾
Ⅰ𝑐𝑐𝑐𝑐

2

𝜎𝜎𝑡𝑡2𝜋𝜋𝜋𝜋
                                                      (15) 

 
Therefore, the size of the induction hole must be greater than the value of the above equation. In addition, the 

size is determined by the vapour pressure and distance to the induction hole.  
The relationship between the fracture surface area of concrete and the energy possessed by the SPC agent was 

investigated. If the amount of SPC agent can be estimated before the actual construction, the agent can be 
conserved. Table 6 and Figure 7 show the results of the large concrete sample tested in this study and the test 
pieces of various sizes that have been examined so far. The author considers that there is some relationship between 
the crack area and the SPC amount because the crack propagation energy is only produced by chemical reaction 
of the SPC agent. 

 
Table 6. SPC agent mass  

Concrete size [mm] SPC agent mass [g]  
[kJ] 

SPC agent 
Energy [kJ] 

Crack number 
[n] 

Crack 
area[m2] 

Cylinder-Φ150×150 5 5.85 2 0.0225 
10 11.7 3 0.0338 

Beam-300×300×200 40 46.8 3 0.126 
Beam-300×300×300 60 70.2 3 0.189 

60 70.2 4 0.18 
Beam-000×1000×500 120 140.4 3 0.65 

240 280.8 3 0.95 
 

Based on the fracture mechanics, it can be said that the internal strain energy is released by forming a fracture 
surface. The pressure energy caused by the SPC agent is converted to strain energy, W, which is called the elastic 
wave, and W is released by crack propagation of length, c. In other words, it is thought that energy is absorbed or 
exhausted when forming a fracture surface. Fractures can be thought of as the surface energy 𝛾𝛾 of the fracture 
surface. This is expressed in the following formula:  
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𝑊𝑊 = 2𝑐𝑐𝑐𝑐                           (16) 
 
where W is the total strain energy corresponding to the energy of the SPC agent, c is the crack length corresponding 
to the area of the fracture surface, and γ is the surface energy as a material constant of the concrete used. 

 
Figure 7. Amount of energy generated and cross-sectional area 

 
However, the conversion rate from pressure energy to elastic strain energy varies depending on the reaction 

conditions of the SPC agent. If the SPC agent is released, the energy of the reaction gas is released into the 
atmosphere as adiabatic expansion. When ideal sealing of the SPC agent is carried out, the total energy of the 
elastic wave is proportional to the amount of the agent used. Therefore, it should be possible to infer the amount 
of SPC agent required from the fracture area of concrete. 

The differential value of equation (16) with respect to c is called the energy release rate.  
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝛾𝛾                      (17) 
 
A high value indicates that the concrete is less likely to crack, so this is usually called the fracture toughness 

value. In other words, concrete with a large surface energy is hard to crack. From this point of view, it can be said 
that concrete that absorbs energy by generating a secondary tear at the crack tip is less likely to crack. Improving 
the accuracy of the steam pressure crushing test and accurately measuring the relationship between energy and 
fracture area can contribute to the development of concrete with a high impact toughness value, which will make 
it resistant to impact crushing.  
 
4. Conclusion 

 
In this study, we examined a method for controlling the crushing of concrete using an SPC agent. By using an 

induction hole, it is possible to control the direction of the generated crack, and cracking control using induction 
holes were effective even in the case of a large sample of the size used for construction. 

1) Using a SPA agent that generated high-pressure steam, it was possible to crush concrete more safely than 
explosives and without generating dust.  

2) By using an induction hole, the direction of the generated tear could be effectively controlled. 
3) From the theory of elastic waves, it was shown that the principle of crack control is due to the tension stress 

of the reflected wave from the induction hole. 
4) The concrete fracture surface area depended on the generated energy of the SPC agent, and a proportional 

relationship was established.   
5) From the relationship between the fracture surface area and energy, the impact toughness value of concrete 

can be estimated. 
It is expected that this will contribute to the development of concrete that is resistant to impact loads in the 

future through experiments using vapour pressure crushers for controlled fracturing. 
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