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Abstract: Hole expansion ratio is a material parameter which defines the extent to which sheet metals are formed. 
Research has shown that, the stress state observed at the hole edge after hole expansion test is similar to those 
observed during conventional uniaxial tensile test. However, conventional tensile test methods are not efficient in 
evaluating material edge formability. This work utilised optical non-contact measuring techniques to examine 
failure behaviour during tensile test and hole expansion test of commercially pure titanium sheet, fabricated with 
either abrasive water jet cutting or electric discharge machining. The work found that, the deformation mode in 
conventional tensile testing are governed by localised necking and subsequently diffused necking prior to failure. 
Deformation mode observed in hole expansion test is characterised by localised necking with no visible occurrence 
of diffused necking prior to failure. The highest strains are concentrated at the hole edge during hole expansion 
test due to their sensitivity to the hole preparation method with accompanying multiple localised necking sites 
resulting in non-uniform deformation. Strains become concentrated in the bulk material microstructure rather than 
the machined edge during tensile testing resulting in single localised deformation site and a more homogenous 
deformation. 
Keywords: Titanium alloys; Tensile deformation; Hole expansion test; Edge conditions; Failure mode; Uniaxial 
stress state.  

 
 
1. Introduction 
 

Titanium and its alloys have been utilized in various applications mainly due to their high corrosion resistance, 
high fatigue toughness and high temperature strength [1]. However, one of the downsides of this material is their 
poor machinability, which has been attributed mainly to their low thermal conductivity, high temperature strength 
and low elastic modulus [2]. Reduced value of elastic modulus makes titanium parts susceptible to vibration and 
deflection during machining process [3]. Machining induced physiochemical functions are associated with the 
machined surface integrity properties, which affects the functional performance of components and potentially 
affect their manufacturing process [4]. Normally, the attained sheet edge roughness after machining is a function 
of the material property (texture) [5] and in some cases the technique used to process the sheet material [6]. 
Machining induced edge defects also act as stress raisers thereby optimizing the fatigue and fracture life [7-9], 
residual stress and hardness [10] of components. Electric discharge machining (EDM) and Abrasive water jet 
(AWJ) cutting are non-traditional cutting techniques adopted by industry mainly due to their better surface finish 
and versatility compared to their conventional counterparts [11]. The quality of titanium sheet edges produced 
after EDM [12-14] and AWJ [15, 16] cutting are a function of the adopted cutting parameters. Severity of defects 
generated on edge surfaces during machining have many impacts on the in-service performance of titanium and 
its alloy. Considering the sensitivity of titanium to notches and surface inhomogeneity, there is the need to ascertain 
if the edge surface asperities produced during machining impacts on their forming behavior. 

For cumbersome forming techniques like sheet stretching, the prediction of the onset of necking of sheet limit 
strain is difficult. The hole expansion test (HET) is used to account for the edge forming limit strain of sheet metals 
for a given machined edge. The performance of a given hole edge stretching process is largely dependent on the 
tool geometry [17], the edge condition [18] and the cutting method [19]. The hole expansion ratio (HER) represents 
the extent of edge formability of sheet metals. The higher the HER, the higher the forming performance of the 
material. The HER is expressed by equation (1); 
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𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑑𝑑𝑓𝑓−𝑑𝑑0
𝑑𝑑0

× 100%                                                                                                                              (1) 
   
where df  is final hole diameter and d0 is initial hole diameter. 

Generally, the forming limit diagram (FLD) is a plot of the major and minor strain evolution during sheet metal 
forming under different stress states [20]. The FLD provides information on the limit to which sheet metals are 
safely formed as well as predicting regions at which failure occurs. The stress state observed at the hole edge after 
HET is the same as that observed during traditional tensile test [21]. However, traditional tensile test techniques 
are not effective for evaluating the edge formability of materials. This has informed the decision of some 
researchers to co-relate HER to tensile properties of materials such as; tensile strength [22], average plastic 
anisotropy and total elongation [23]. However, the co-relations are not able to explain the disparities in deformation 
modes observed for both forming methods. There is therefore the need to examine the nature of the failure modes 
attained during tensile deformation and HET in order to provide clarity on the deformation behavior attained in 
both techniques.  

This research examines the effect of EDM and AWJ on the formability of commercially pure titanium (CP-Ti) 
grade 2 in order to ascertain the nature of the deformation modes observed during tensile deformation and HET 
using optical non-contact techniques. This work also provides useful data on the limit fracture strain attained during 
HET of CP-Ti grade 2 after AWJ and EDM machining. The fracture limit strains obtained in this research could 
implemented during HER modeling of this material. 
 
2. Experimental procedure 
 
2.1 The material 

The material studied in this work is CP-Ti grade 2 sheet with a thickness of 1.6mm. CP-Ti grade 2 exhibits 
excellent strength to weight ratio and has the tendency to retain its strength substantially during deformation. 
Notable among their use in the aerospace industry is their adoption in airframe skin applications [24]. 
 
2.2 Material preparation and characterization 

AWJ and EDM machining methods are used to fabricate the tensile specimens and the circular discs for the 
HET. A 150kN Zwick/ Roell Z150 load cell tensile testing machine, equipped with a programme service for the 
manoeuvre of its transverse motion was utilized to conduct a room temperature tensile test on the test samples in 
accordance with ISO 6892-1:2016. A constant strain rate of 0.001/s was used for the test, which was controlled by 
testXpert II software for a steadily changing crosshead speed. Digital image correlation (DIC) was used to evaluate 
the strain displacement during the tensile deformation process. The strain distribution after the tensile deformation 
was analyzed using Davis 8.0 software supplied by LAVision. For the HET, a 100mm diameter hemispherical 
punch was used to deform a 20mm diameter hole until an edge crack occurred. The punch was driven at a steady 
speed of 1mm/s. Gom Aramis software was used for strain analysis and GOM Atos software for evaluating sheet 
thickness evolution after deformation. 

Material characterization was done by grinding and polishing using a Buehler Automet 300 Pro grinder- 
polisher machine. Scanning electron microscopy (SEM) was conducted on a Quanta FEG 250 microscope. Results 
after SEM analysis of the material in as-received condition revealed fine equiaxed grain structure with average 
grain size of 5.7 ±0.5μm, Figure 1a. The material exhibited a highly anisotropic behaviour when examined in three 
sheet-processing directions at room temperature, Figure 1b. 
 

 
(a)SEM of as-received material, (b) Mechanical behaviour 

Figure 1. Properties of as-received material 
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3. Results and discussion 
 
3.1 Machined surface integrity 

The edge surface after AWJ cutting are characterized by its mechanical erosion attribute. The main edge surface 
defects observed are; micro-grooves, micro-indents, micro-scratches and micro-voids. These AWJ micro- defects 
were produced mainly by virtue of the paths travelled by the abrasive particles during the cutting process, Figure 
2a. The EDM cut surface are characterized by; pockmarks, debris, micro-cracks and micro voids, due to its thermal 
erosion features, Figure 2b. EDM surface defects are mainly caused by re-melt solidification via dielectric fluid 
inability to wash away the molten material during the machining process. 
 

 
(a)AWJ surface, (b) EDM surface 

Figure 2. SEM of machined surface of CP-Ti grade 2 
 
 
3.2 Strain path and stress state after HET 

The material after HET showed higher edge formability for EDM machined edge (195.9%) compared to the 
edge prepared with AWJ (140.4%), Figure 3a. The difference in edge forming performance could be attributed to 
the nature of the edge surface finishes attained after machining. Generally, better edge surface finish are obtained 
for the EDM cut surfaces (Ra~0.85µm) compared to the AWJ cut surfaces (Ra~3.76µm) for this material. The 
deeper micro-grooves seen in AWJ cut edges offered a fertile ground for crack nucleation and propagation 
resulting in early fracture. A plot of the major and minor strain path evolution at the hole edge after HET is shown 
in Figure 3b. The material showed lowered fracture limit strain for AWJ (0.5) compared to EDM (0.8) after HET. 
The major-minor strain path at the hole edge is consistent with the uniaxial stress state behaviour on the forming 
limit diagram [20]. 

 

 
(a) HER after HET (b) Strain path at hole edge 

Figure 3. Impact of machining method on edge formability 
 
3.3 Strain evolution during tensile test and HET 

Optical non-contact measurement techniques are used to ascertain the strain evolution during the deformation 
processes. Figure 4 shows DIC analysis of the global strain displacment in the plastic region during the tensile 
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deformation process. The strain displacement appears to occur mostly within the bulk material microstructure 
rather than the machined edges. The strain distributions during tensile deformation are probably governed by the 
material texture. The strains displace and concentrate at high shear stress zones during localised necking with 
increasing deformation load, Figure 4d. 

 

 
(a) e=0.19, (b) e=0.26, (c) e=0.53, (d) e=1.15 

Figure 4. Strain displacement in the plastic region 
 

Figure 5 shows the strain distribution of the samples after HET and uniaxial tensile test. For the tensile test 
sample, localised necking was observed followed by diffused necking with accompanying reduction in the gage 
width cross sectional area at the fracture zone prior to failure, Figure 5a. Shear stresses acting are optimum when 
acting at 450 to the fracture line, and are concentrated in the localised necking region prior to failure. Gom Aramis 
analysis revealed that, the stresses acting are highest around the hole edge after HET, Figure 5b.  Localised necking 
was observed at the crack edge with no visible reduction in the local width at the crack site, (Figure 5b inset). The 
exerted shear stresses are highest, when acting 450 to the applied load resulting in failure at edges where those 
stresses exist. This occurrence was the main reason for the visible 450 angled fracture line after HET (red line in 
Figure 5b inset), similar to the shear angle observed in tensile deformation. However, the main difference observed 
during the deformation processes lies in the necking morphology. Localised necking followed by diffused necking 
are observed in the tensile deformation process. Failure observed after HET however is characterised by localised 
necking with no visible diffused necking prior to fracture. Shear stresses are observed to act in both deformation 
processes, reminiscent of ductile shear fracture deformation mechanism.  

 

 
(a)Tensile strain evolution, (b) Strain evolution during HET (inset:SEM of hole edge) 

Figure 5. Deformation mode analysis 
 

Another striking difference observed between the conventional tensile deformation behaviour and HET is the 
number of localised necking sites observed. There exist the tendency for the occurrence of numerous localised 
necking sites during HET (Figure 6), compared to the single localised necking site observed during conventional 
tensile test. These multiple localised necking sites serve as zones of high strain gradient, making the prediction of 
the HER based solely on tensile deformation parameters (where generally only one form of localised necking 
occurs) very cumbersome. 

Figure 7 shows Gom Atos analysis after fracture of the samples after HET and tensile test. Uniform sheet 

35

J.S Kwame et al. Journal of Materials and Applications 2020;9(1):32-37



 

 
 

thinning are observed for the tensile test samples at localised necking zones, Figure 7b. The changes in morphology 
of the localised necking with sheet-processing direction confirms the responsiveness of the strain displacement to 
the material texture, Figure 7b. The sample after HET also showed thinning at the localised necking regions. The 
higher number of localised necking seen after HET resulted in non-uniform thinning leading to higher deformation 
gradients at the hole edge region, Figure 7a.   

 

 
Figure 6. Multiple localised necking sites during HET 

   

 
(a)HET at fracture, (b) Tensile test at fracture 

Figure 7. Nature of thinning distribution at failure 
 
4. Conclusion 
 

Uniaxial stress state is observed at the hole edge after HET which is synonymous with the stress state observed 
during traditional tensile testing. However, conventional tensile testing methods are not suitable for determining 
the HER of sheet materials. This work used optical non-contact techniques to examine the failure processes after 
tensile test and HET in order to understand the nature of their deformation behaviour at failure. The work found 
that; 

1) Tensile deformation at fracture is generally characterised by localised necking followed by diffused necking. 
However, only localised necking is observed after HET. Shear stresses are observed to act for both forming 
techniques and are aligned 450 to the crack axes at optimum values, reminiscent of ductile shear fracture 
mechanism 

2) The occurrence of high number of localised necking sites after HET results in non-uniform thinning around 
the hole edge, leading to the formation of high deformation gradients. Single localised necking site occurs after 
tensile testing resulting in a more homogeneous deformation 

3) Apart from material microstructure, the type of machining method adopted have major impact on the edge 
formability of CP-Ti grade 2. The material exhibited higher edge forming performance (195.5%) with higher 
fracture strain limit (0.8) for EDM cut edges compared to AWJ cut edges (HER:140.%, fracture strain limit: 0.5). 
Strain evolution during HET are highest at the hole edge at fracture.  

4) Strain displacement during traditional tensile testing is governed mainly by the material texture and occurs 
away from the sheet edge, thereby proving independent of the sheet machining method 
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