Brown Coal in Victoria, Australia and Maddingley Brown Coal Open Cut Mine Batter Stability

  • Lei Zhao
  • Greg You
Keywords: Batter stability; Brown coal; Block failure; Finite element analysis; Rainfall; Three-dimensional numerical modelling.

Abstract

Brown coal is young, shallowly deposited, and widely distributed in the world. It is a fuel commonly used to generate electricity. This paper first reviews the resources and characteristics of brown coal in Victoria, Australia, and its exploitation and contribution to the economy or power supply in Victoria. Due to the shallow depth of the brown coal seam, e.g. very favorable stripping ratio, open pit mining is the only mining method used to extract the coal at low cost for power generators. With the large-scale mining operations, cases of batter failure were not rare in the area. From the comprehensive review of past failures, overburden batter tends to fail by circular sliding, coal batter tends to fail by block sliding after the overburden is stripped due to a weak water-bearing layer underneath the coal seam and tension cracks developed at the rear of the batter, and batter failure is typically coincided with peak raining seasons. Secondly, the paper reviews the case study of Maddingley Brown Coal (MBC) Open Cut Mine batter stability, including geology, hydrogeology, and hydro-mechanically coupled numerical modelling. The modelling employs three-dimensional finite element method to simulate the MBC northern batter where cracks were observed in November 2013. The comprehensive simulation covers an overburden batter, a brown coal batter, two rainfall models, and a buttressed batter. The simulated results agree well with observed data, and it is found that the rainfall at the intensity of 21mm substantially lowered the factor of safety of the coal batter.

Published
2020-08-15
Section
Articles