Seismic Assessment of Asymmetric Single-storey R/C Buildings by Two New Methodologies: Enforced Displacement-Based and Forced-Based Pushover Procedures

  • Athanasios P. Bakalis
  • Triantafyllos K. Makarios
Keywords: Non-linear static analysis; Pushover procedure; Response history analysis; Inelastic dynamic eccentricities; Floor enforced-displacements; Capable near collapse centre of stiffness; Torsionally-flexible buildings.

Abstract

Τwo new documented non-linear static (pushover) procedures on asymmetric single-storey R/C buildings are presented in detail herein, aiming directly at the Near Collapse state. Both procedures apply relative to the “Capable Near Collapse Principal reference system” of the single-storey building. The main objective of the two proposed procedures is to fully consider the coupling between torsional and translational vibrations of the floor-diaphragm under translational seismic excitation of the building’s base. The first pushover procedure, which is a Direct Displacement-Based one, uses floor enforced-displacements as action. In the second pushover procedure, which is a Force-Based one, the floor lateral static forces are applied eccentrically to centre of mass using suitable inelastic design eccentricities (dynamic plus accidental ones). The floor enforced-translations/rotation and the appropriate inelastic dynamic eccentricities used in the two proposed procedures derive from extensive parametric non-linear response history analysis and are given by figures or equations. In order to clarify in detail and evaluate the new pushover procedures, a torsionally-flexible, double-asymmetric, single-storey R/C building is seismically assessed. The validation of both procedures relative to the results of non-linear response history analysis shows that both predict with safety the in-plan displacements of the building.

Published
2020-05-15
Section
Articles