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Abstract: The desire to generate a stress optimised structural node with maximum stability is often coupled with 

the goal of low manufacturing costs and an adapted and minimal use of material. The complex, three-dimensional 

free-form structures, which are created by means of topology-optimisation, are only partially suitable for 

conventional manufacturing. The wire arc additive manufacturing (WAAM), by means of arc welding processes, 

offer a cost-effective and flexible possibility for the individual production of complex, metallic components. Gas 

metal arc welding (GMAW) is particularly suitable to produce large-volume, load-bearing structures due to build-

up rates of up to 5 kg/h. The generation of strength and stiffness adapted support structures by means of the 

numerical simulation method of topology-optimisation was investigated in this study to generate topology-

optimised structural nodes. The resulting node is transferred into a robot path using CAD/CAM software and 

manufactured from the filler material G4Si1 using WAAM with the GMAW process. Based on the boundary 

conditions of the WAAM process, the path planning and thus the manufacturability of the topology-optimised 

supporting structure nodes is evaluated and verified using a sample structure made of the welding filler material 

G4Si1. Depending on the path planning, an improvement of the mechanical properties could be achieved, due to 

changes in t8/5 times. 

Keywords: WAAM; Wire arc; GMAW; Gas metal arc welding; Wire-based; Arc; Additive manufacturing; 

Topology-optimisation.  

 

 

1. Introduction 
 

Stress-optimised structures, which have been designed based on nature (bionics), are becoming increasingly 

important. Strength and stiffness-adapted supporting structures as well as iconic architecture and individual 

aesthetics can be realised. The motivation of a lightweight node structure with maximum stability is often coupled 

with the desire for minimal and adapted material use and low manufacturing costs. 

Over the last decades, topology-optimisation has established itself in various engineering disciplines as a robust 

tool for optimising material distribution within a given design space [1-5]. Topology-optimisation typically results 

in complex and abstract structures with undercuts and cavities. These structures cannot be produced with 

conventional manufacturing methods, or only to a limited extent. Therefore, a manufacturing technology for load-

bearing structures made of metals is required with which these topology-optimised structures can be produced. 

Additive manufacturing (AM) processes offer the necessary freedom of design to produce highly complex 

components. This paper presents a production and process strategy view regarding a topology-optimised structural 

node, which was previously published in [6]. 

Additive manufacturing describes the layered construction of three-dimensional objects by the targeted 

application or joining of wire, powder or foil materials made of metal or plastic [7]. Which allows to produce 

complex geometries from a batch size of 1 with a resource-efficient material application. 

Up to now, the production of complex metallic 3D components has mainly been realised by laser-based 

processes. The processes used for this purpose are Direct Energy Deposition (DED) and powder bed fusion by 

laser (PBF). The powder bed process in particular is severely limited in productivity for larger components due to 

the achievable layer thicknesses of a few tenths of a millimetre and a low build-up rate of approx. 1-10 cm³/h. This 

results in long production times and limited component dimensions [8-10]. The laser-based DED process offers 

build-up rates of approx. 300 cm³/h-700 cm³/h and layer thicknesses of up to 1.5 mm, which results in a 

significantly higher productivity than PBF processes [11]. 

Galjaard et. al. carried out the topology-optimisation of a structural node for a tensegrity structure, which is 

only stressed in tension. After the optimisation, the node was produced additively in a Laser PBF process. For 
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reasons of production time and costs, the component was manufactured in 40% of its original size. The authors 

estimate that the production in original size would have taken about 15 days with today's means, which in 

combination with the high powder costs renders the component uneconomical to produce [12]. 

Wire arc additive manufacturing (WAAM) can achieve significantly higher build-up rates, which has made it 

the focus of attention in recent years [13]. Figure 1 shows an example of the WAAM process chain, taking 

topology-optimisation into account. WAAM can utilise gas metal arc welding (GMAW), the tungsten inert gas 

welding (TIG), as well as plasma processes during additive manufacturing. In these processes, a layer-by-layer 

structure is realised by feeding and melting a wire-shaped filler material. This process enables the generation of 

undercuts, cavities for lightweight construction applications or any cooling channels running in the component 

which cannot be produced or can only be produced to a limited extent using conventional methods (e.g. [14, 15]). 

The GMAW process is particularly characterised by its cost-effective and robust process technology for additive 

manufacturing. Due to the local inert gas cover, there are no restrictions for the workspace size. In addition, the 

coaxial supply of filler material makes it possible to work independent of direction. Depending on the material and 

component geometry, the WAAM process using GMAW welding technology allows deposition rates of approx. 5 

kg/h [16, 17]. 

 

 
Figure 1. Process chain of additive manufacturing using WAAM according to [12]. 

 

2. Experimental methods of additive manufacturing 
 

The welding tests and additive manufacturing of the topology-optimised structural nodes were carried out using 

an GMAW welding power source "EWM alpha Q 552 Expert 2.0 puls MM". The welding tests were carried out 

with the energy-reduced short arc technology "coldArc". A 6-axis industrial articulated arm robot "Kuka KR150-

2" was used to ensure reproducible torch movement. 

As base material (substrate) S355J2+N with a thickness of 20 mm was used. The additive structure (Figure 2) 

was realised with the low-alloyed solid wire electrode DIN EN ISO 14341-A-G4Si1. To determine suitable 

welding parameters, preliminary tests were carried out on wall structures, which were 300 mm long and 160 mm 

in hight, with different energy inputs, with widths of one, two or three weld beads (Figure 2 right) and varying 

overlaps. In addition, a parameter set with a meandering path planning was tested Tensile samples were taken from 

additive manufactured wall structures along and across the build-up direction. In addition, the t8/5 time was 

measured using a thermocouple type C. The approach of using parallel weld beads to increase the structure width 

comes from the field of filling strategies for volume bodies. Usually, a meander path or an increase in the material 

discharge is used to widen the weld bead. For surface filling in solids, meander paths are sometimes used, but also 

contour-parallel and line filling. In analogy to this, a meandering path, parallel welding beads and an increase in 

material output are now to be used to create wide wall structures.  The knowledge gained can in turn be transferred 

to more complex bodies. The underlying idea for using the welding beads is to reduce the heat input at each point 

in time in order to reduce the heat build-up. 

Un- and low alloyed steel is commonly characterized during welding by its t8/5 time according to DIN EN 1011-

2:2001-05 [18]. It describes the cooling time of the weld bead and the heat effected zone (HAZ) in a temperature 

interval between 800°C and 500°C. This temperature range is decisive for the mechanical properties due to the 

phase transformation from - to -phase. 

The CAD/CAM program DCAM 2018 from SKM was used to slice the 3D component, i.e., to break it down 

into layers, which makes sequential 2D contour generation possible. The path planning was created from this. 

Finally, an integrated post-processor is used to convert the data into the Kuka programming language. 
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Figure 2. additive manufacturing of a wall structure (left: schematic of WAAM process; right: wall structures with 

one, two and three adjacent rows) 

 

3. Results and discussion 
 

In preliminary parameter studies three parameter sets found to be suitable for additive manufacturing of G4Si1 

in general and were investigated further to ensure the mechanical properties of thick structures are suitable to 

generate loadbearing parts. Thereby t8/5 time and energy input were related to each other.  

Different wall thicknesses were tested throughout the course of this investigation with varying energy inputs 

per unit length at 4 kJ/cm, 6 kJ/cm and 8 kJ/cm. The thickness was varied between 6 mm for one row, to up to 12 

mm for three rows and the meandering wall structure.  

The mechanical properties of the weld metal are primarily determined by its chemical composition and the rate 

at which it cools from the liquid phase. Welding temperature cycles are generally characterised by the time required 

to pass through a certain temperature interval. The cooling time from 800°C to 500°C (t8/5 time) has proven itself 

in welding technology to characterise the mechanical-technological properties of the weld metal [19]. 

The t8/5 times were measured in the middle of the wall structure at the 150 mm length mark and at a height of 

80 mm (40th layer). This position was chosen because a quasi-static condition for the cooling time occurs after 20 

deposited layers according to Henckell et. al. [20], and the chosen position is well above this boundary condition. 

The aim was to achieve the highest possible significance of the values. Due to the periodic heating, there are 

several t8/5 times for each welding layer. In these tests, the last t8/5 cycle was used for evaluation, as this is the last 

complete cycle of the - to - transformation. 

It can be seen from the plots that the t8/5 times for G4Si1 (Figure 3) increase with increasing energy input per 

unit length. Furthermore, the t8/5 times decrease with increasing number of rows. In order to be able to evaluate 

additive manufacturing using the GMAW process for samples generated in multiple rows, the cooling time (t8/5 

time) is considered for the different numbers of rows. Figure 3 shows that the t8/5 time decreases with increasing 

number of rows and is halved in the comparison of single-row generated samples to three-row generated samples 

at a line energy of 4 kJ/cm. The reduction in t8/5 time is evident for both materials and all line energies used. 

 

 
Figure 3. left: t8/5 time compared to energy input and number of rows 
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The fastest cooling time (t8/5 time) was measured at 4 kJ/cm line energy and three-row build-up with 8 s. The 

slowest cooling time (t8/5 time) was recorded with 4 kJ/cm line energy and meandering generation of the wall 

structure. 

To evaluate the tensile tests, the first step was to examine the mechanical properties of the specimens generated 

in welding direction and in build-up direction from the point of view of possible dependencies.  

The following Figure 4 shows the tensile strength and the yield strength for G4Si1 as a function of the specimen 

orientation with a number of specimens of n=3. Only very small deviations of the tensile strength and yield strength 

for different specimen orientations are shown there. The examination of the respective test results for the tensile 

strength do not reveal any significant deviations with regard to the specimens generated in welding direction and 

in build-up direction. In this respect, the present test results do not allow any conclusions to be drawn about 

different mechanical properties in the different directions considered for this material. 

Figure 4 illustrates the resulting tensile and yield strength with their corresponding energies. The tensile strength 

in build-up direction and in welding direction are within margin of error of each other, which leads to the 

conclusion that the mechanical properties are nearly homogeneous on moth directions. It is evident that the 

mechanical strength increases with decreasing energy input and increasing number of rows (Figure 4). Moreover, 

the meandering welding path achieved the lowest overall strength of all tested parameter sets. To achieve at least 

a yield strength as high as the value in the datasheet of G4Si1 (460MPa), it is necessary to use a low energy 

parameter set and use a building strategy with at least two rows of thickness. 

 

 
Figure 4. tensile and yield strength in build-up and welding direction compared to energy input and path planning 

strategy 

 

Furthermore, a lower line energy and a higher number of rows lead to better mechanical properties, i.e., higher 

strength. This is due to the lower t8/5 times for lower line energies and a higher number of rows. This can be clearly 

seen in Figure 5 using a wall thickness of 9 mm and 12 mm as a reference for G4Si1. The results show that the 

use of a parallel with two rows build up approach for a thickness of 9 mm will increase the tensile strength by 

more than 12% and the yield strength by nearly 25% in comparison to a generation via one weld bead. The results 

for a structure width of 12 mm are comparable to the smaller structure width. Therefore, a parallel build up of 

three welding beads with lower energy input is more suitable to achieve better mechanical properties than the 
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datasheet states. The tensile strength for a build up with three parallel rows could be increased by nearly 6% 

compared to two parallel rows and nearly by 22% with meandering. Moreover, the yield strength for three rows is 

12% higher than for two rows and nearly 40% higher than a meandering path planning. 

A structural design shows better mechanical-technological properties for the same wall thicknesses when a low 

line energy is used in a multi-row design. 

 

        
Figure 5. Comparison of mechanical strength for varying energy inputs and path planning strategies for two 

different withs 

 

4. Production of topology-optimised node geometry 
 

After finishing the evaluation of the mechanical properties of G4Si1 in additive manufacturing it could be 

ensured, that the minimal needed yield strength of approx. 420 MPa to generate a structural node as calculated by 

Reimann et. al. could be achieved [6]. The production of a complex structure using WAAM often requires 

reworking in CAD, as it is only possible to a limited extent to produce horizontal overhangs or structures with a 

deviation of more than 40° from the vertical in a layer-by-layer, 3-axis design. The reason for this is that, unlike 

other additive manufacturing processes, the WAAM process does not use supporting structures. Therefore, the 

geometry was reworked in the ANSYS SpaceClaim Design Modeler to ensure manufacturability. Figure 6 shows 

the original geometry. The red marked areas had to be adjusted to ensure manufacturability. The horizontal 

overhangs of the structure were removed, and the overhang angle of the connection area was slightly adjusted to 

achieve an angle of 40° to the vertical.  

 

 
Figure 6. Improving the manufacturability of the 30° oblique joint. 

 

As stated, before it was possible to achieve the needed mechanical properties to be able to manufacture a 

structural node with the needed properties. Considering the approached 420 MPa three different parameter sets 

could be used (Figure 5). The parameter with 4 kJ/cm and at least 3 adjacent rows was used for the production of 

the structural node in order to have a sufficient reserve between the resulting mechanical properties and the needed 

properties to ensure sthe stability and longevity of the structural node. Using this parameter set 208 layers of 1.8 

mm each were needed to achieve a resulting overall height of approx. 375 mm. Figure 7 shows the path planning 

for the component and the top welding layer. It can be seen that the top layer has three welding paths with contour-

parallel filling strategy, which results in six adjacent welding beads. The component was produced with a contour-
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parallel filling strategy to improve the connection between the welding beads inside the component. This should 

result in slightly better mechanical properties than presented in the tensile tests, because of a higher wall thickness, 

which might add up to an even better safety factor. 

 

 
Figure 7. Path planning (left: entire component; right: top welding layer) 

 

The component was produced on a substrate plate using the GMAW welding process. The assembly was carried 

out in a layer by layer process and an interpass temperature of 100°C was maintained. Figure 8 shows the additively 

manufactured, topology-optimised component which was cleaned and not yet removed from the substrate. 

 

 
Figure 8. Additively manufactured, topology-optimized 30° oblique joint. 

 

5. Conclusion and outlook 
 

This study has shown that the build-up strategy is as important as the overall welding parameter set to achieve 

the desired mechanical properties for additively manufactured structures. Therefore, a parameter set with low 

energy input and a build-up strategy with adjacent rows of welding beads rather than meandering should be used 

for the additive manufacturing, if possible, due to the increasing tensile and yield strength. The increase in 

mechanical strength can be traced back to a decreasing t8/5 time for wider structures, due to a better capability to 

transfer heat away from the last welded layer.  

Despite the high degree of design freedom in additive manufacturing, it became apparent during the production 

of the node that reworking of the design is absolutely necessary, since today's boundary conditions of topology-

optimisation do not offer the possibility of defining limiting angles in advance or avoiding horizontal overhangs. 

One way of counteracting this is to use a 5-axis machining strategy in which the welding torch can be moved in x, 

y and z directions and the component can be positioned under the welding torch using a turn-tilt table. This allows 

to avoid constrained positions and to create arbitrary angular positions and even overhangs, as the welding torch 

itself is always in a neutral position. 

The use of additive manufacturing makes it possible to create geometries which cannot be produced or can only 

be produced to a limited extent using conventional methods, which can result in a significant added value in 

production. However, when calculating and using additive manufacturing processes, it must be considered that 

reworking is necessary for components, especially for connecting and functional surfaces. 
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