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Abstract: This paper presents a theoretical solution of a reinforcement-to-concrete interface model under pull-
push loading. Expressions for the interfacial shear stress distribution and load-displacement history are derived for 
different loading stages. The full debonding propagation process is discussed in detail and the analytical solutions 
are verified by comparing with existing theoretical models. Results of the analytical solution are presented to 
illustrate how the bond length and local bond-slip law affect the interfacial bond behavior. While the case study in 
this paper is on textile reinforced concrete, the analytical solution is equally valid to similar mechanical cases such 
as rebar reinforced concretes.  
Keywords: Bond-slip; Interface; Analytical solution; Textile reinforced concrete.  

1. Introduction

In recent years, fiber-reinforced polymer (FRP) materials have been widely used in reinforced concrete in place
of conventional steel reinforcement thanks to their advantages such as high strength, light weight and great 
corrosion resistance in marine environment. Conventionally FRP has been produced in bar shapes to imitate the 
steel rebar. However, the application has been restricted due to difficulties in bending the FRP bars at the 
connections. In contrast, textile fabrics made of fiber bundles have well offset those limitations. Therefore, textile 
reinforced concrete has been increasingly used recently since they enable the production of lightweight and 
aesthetically appealing members. To understand the structural behavior of the textile reinforced concrete, the bond 
between the textile and the concrete has been a key concern. To experimentally investigate the bond performance, 
the quasi-standard pullout test has been widely used [1]. While a great deal of research is now available on the 
mechanical behavior of the bonded interface, no closed form analytical solution has been presented which is 
capable of predicting the entire debonding propagation. This paper is to present such an analytical solution using 
a trilinear local bond-slip law.  

2. 1D analytical model

A double-sided pullout test setup, originally developed at the RWTH Aachen University in Germany, has been
illustrated in Figure 1. The test follows the concept of the conventional steel rebar reinforced concrete, where the 
reinforcement is loaded under tension, while concrete is under compression.  

Figure 2 shows a schematic diagram of the pull-push test of a singular textile roving reinforced concrete model, 
where the cross-sectional area of the three components (reinforcement, adhesive layer and concrete) are constant 
along the length. The width and thickness of the concrete are denoted by 𝑏𝑏𝑐𝑐  and 𝑡𝑡𝑐𝑐  respectively. The textile 
reinforcement is assumed to be homogenous with a circular cross-section (diameter of ∅), where the unloaded 
transverse rovings of the mesh are excluded. The bonded length is denoted by 𝐿𝐿. The Young’s modulus of the 
reinforcement and the concrete are 𝐸𝐸𝑝𝑝 and 𝐸𝐸𝑐𝑐 respectively. A horizontal coordinate system originating from the 
left end is adopted (Figure 2). In such a model, the adhesive layer is mainly subjected to shear deformations, so 
mode II interfacial fracture is the dominate failure mode. The concrete and the reinforcement are assumed to be 
subjected to axial deformations only. Note that in such a model, the adhesive layer represents not only the 
deformation of the actual adhesive layer, but also that of a thin layer of the adjacent concrete and is referred to in 
this paper as the interface.  
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Figure 1 Pullout test setup for textile reinforced concrete [1] 

 

 
Figure 2 Idealized push-pull model of reinforcement-to-concrete bonded interface 

 
The differential equation expressing equilibrium conditions along the reinforcement can be defined as  
 
𝐴𝐴𝑝𝑝

𝑑𝑑𝜎𝜎𝑝𝑝
𝑑𝑑𝑑𝑑

− 𝜋𝜋∅𝜏𝜏 = 0           (1) 

𝐴𝐴𝑝𝑝𝜎𝜎𝑝𝑝 + 𝐴𝐴𝑐𝑐𝜎𝜎𝑐𝑐 = 0          (2) 
 
where 𝐴𝐴𝑝𝑝 = 𝜋𝜋∅2

4
 is the cross-sectional area of the reinforcement, and 𝐴𝐴𝑐𝑐 = 𝑏𝑏𝑐𝑐𝑡𝑡𝑐𝑐 is the cross-sectional area of the 

concrete; 𝜎𝜎𝑝𝑝 and 𝜎𝜎𝑐𝑐 are the axial stress in the reinforcement and the concrete respectively, and 𝜏𝜏 is the bond stress. 
Assuming both the reinforcement and the concrete are in the elastic range during the bond test, the constitutive 
equations of the adhesive layer and the two adherends are to Eqs. (3-5) 
 
𝜏𝜏 = 𝑓𝑓(𝛿𝛿)            (3) 

𝜎𝜎𝑝𝑝 = 𝐸𝐸𝑝𝑝
𝑑𝑑𝑢𝑢𝑝𝑝
𝑑𝑑𝑑𝑑

            (4) 

𝜎𝜎𝑐𝑐 = 𝐸𝐸𝑐𝑐
𝑑𝑑𝑢𝑢𝑐𝑐
𝑑𝑑𝑑𝑑

            (5) 
 
The interfacial slip 𝛿𝛿 is defined as the relative displacement between the two adherends:  
 
𝛿𝛿 = 𝑢𝑢𝑝𝑝 − 𝑢𝑢𝑐𝑐               (6) 
 
After substituting Eqs. (2-6) into Eq. (1), the governing equation is obtained:  
 
𝑑𝑑2𝛿𝛿
𝑑𝑑𝑑𝑑2

− 𝜆𝜆2𝜏𝜏 = 0            (7) 
 
where 𝜆𝜆2 = 𝜋𝜋∅𝛾𝛾 and 𝛾𝛾 = 1

𝐸𝐸𝑝𝑝𝐴𝐴𝑝𝑝
+ 1

𝐸𝐸𝑐𝑐𝐴𝐴𝑐𝑐
 . 

The axial stresses in the reinforcement and concrete could be reformatted as follows:  
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𝜎𝜎𝑝𝑝 = 1
𝐴𝐴𝑝𝑝𝛾𝛾

𝑑𝑑𝛿𝛿
𝑑𝑑𝑑𝑑

            (8) 

𝜎𝜎𝑐𝑐 = −𝜎𝜎𝑝𝑝𝐴𝐴𝑝𝑝
𝐴𝐴𝑐𝑐

            (9) 
 
Once a local bond-slip relationship 𝑓𝑓(𝛿𝛿) is given, a pullout test can be simulated and compared with the 

experimental data. Various local bond-slip law has been developed in the past decades, for example, the well-
recognized modified Bertero-Eligehausen-Popov (mBEP) model and the Cosenza-Manfredi-Realfonzo (CMR) 
model [2, 3]. However, the above equilibrium equations cannot be solved in a closed form using those bond-slip 
models, and thereby computing software are necessary to simulate the interface behavior. In order to obtain a 
closed form solution, which offers unique advantages in parametric studies and design, the trilinear or bilinear 
(special case of a trilinear model) bond-slip laws are more favorable. This paper adopts a trilinear bond-slip law 
(as shown in Eq. (10) and Figure 3). The bond shear stress increases linearly with the interfacial slip until it reaches 
the peak stress 𝜏𝜏𝑓𝑓 at which the value of the slip is denoted by 𝛿𝛿1. Interfacial softening (or micro-cracking) then 
starts with the shear stress reducing linearly with the increase of the interfacial slip. The shear fracture (or 
debonding) occurs when the interfacial slip reaches 𝛿𝛿2 . The residual shear stress 𝜏𝜏𝑟𝑟  implies the friction and 
aggregate interlock over the debonded length. If the aggregate interlock is ignored, 𝜏𝜏𝑟𝑟 = 0 and it yields a bilinear 
local bond-slip law.  

 

𝑓𝑓(𝛿𝛿) =

⎩
⎪
⎨

⎪
⎧

𝜏𝜏𝑓𝑓
𝛿𝛿1
𝛿𝛿                                                                   0 ≤ 𝛿𝛿 ≤ 𝛿𝛿1

− 𝜏𝜏𝑓𝑓−𝜏𝜏𝑟𝑟
𝛿𝛿2−𝛿𝛿1

𝛿𝛿 + 𝜏𝜏𝑓𝑓𝛿𝛿2−𝜏𝜏𝑟𝑟𝛿𝛿1
𝛿𝛿2−𝛿𝛿1

                                    𝛿𝛿1 ≤ 𝛿𝛿 ≤ 𝛿𝛿2
𝜏𝜏𝑟𝑟                                                                                   𝛿𝛿 ≥ 𝛿𝛿2

      (10) 

 
Using the bond-slip model defined in Eq. (10), the governing equation (7) can be solved to find the shear stress 

distribution along the interface and the load-displacement response of the specimen. Figure 4 shows the interfacial 
shear stress distribution and the propagation of debonding. Note that the interfacial shear stress distribution only 
holds when the bond length is substantially higher than the critical softening length 𝑎𝑎𝑢𝑢  for the transfer of the 
ultimate load (Eq. 46).  

 
2.1. Elastic stage 

At the beginning of loading, the entire length of the interface is in an elastic stress state (state I, Figure 4(a)), 
until the interfacial shear stress at x=L reaches 𝜏𝜏𝑓𝑓. Substituting Eq. (10) into Eq. (7), the following differential 
equation is obtained:  

 
𝑑𝑑2𝛿𝛿
𝑑𝑑𝑑𝑑2

− 𝜆𝜆1
2 𝛿𝛿 = 0           (11) 

 
where 𝜆𝜆1

2 = 𝜆𝜆2 𝜏𝜏𝑓𝑓
𝛿𝛿1

           (12) 
Using the boundary conditions of  
 
𝜎𝜎𝑝𝑝 = 0 𝑎𝑎𝑡𝑡 𝑥𝑥 = 0;  𝜎𝜎𝑝𝑝 = 𝑃𝑃

𝐴𝐴𝑝𝑝
 𝑎𝑎𝑡𝑡 𝑥𝑥 = 𝐿𝐿         (13) 

The governing equation (11) could be solved:  
 
𝛿𝛿 = 𝛿𝛿1

𝜏𝜏𝑓𝑓

𝑃𝑃𝜆𝜆1cosh (𝜆𝜆1𝑑𝑑)
πϕsinh (𝜆𝜆1𝐿𝐿)

           (14) 

 

 
Figure 3 Local bond-slip law 
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(a) Elastic stress state 

 
(b) Propagation of softening zone 

 
(c) Initiation of debonding at x=L 

 
(d) Propagation of debonding 

 
(e) Unloading 

Figure 4 Interfacial shear stress distribution and propagation of debonding for a large bond length 
 
and thus the interfacial shear stress and the axial stress in the reinforcement are:  
 
𝜏𝜏 = 𝑃𝑃𝜆𝜆1cosh (𝜆𝜆1𝑑𝑑)

πϕsinh (𝜆𝜆1𝐿𝐿)
           (15) 

𝜎𝜎𝑝𝑝 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃h (𝜆𝜆1𝑑𝑑)
𝐴𝐴𝑝𝑝sinh (𝜆𝜆1𝐿𝐿)

           (16) 

 
Eqs. (14-16) are identical to Yuan et al. [4] by replacing the contact width 𝑏𝑏𝑝𝑝 with the contact perimeter πϕ. 

Thus the equation of the effective bond length (defined as the bond length over which the shear stresses offer a 
total resistance of at least 97% of the applied load) in the paper [4] still holds:  

 
𝑙𝑙𝑒𝑒,𝑒𝑒 = 2

𝜆𝜆1
            (17) 

 
From Eq. (14), it is found that the relative slip at the loaded end (x=L) is:  
 
Δ = 𝛿𝛿1

𝜏𝜏𝑓𝑓

𝑃𝑃𝜆𝜆1
πϕ

coth (𝜆𝜆1𝐿𝐿)           (18) 

 
and thus the load-displacement relationship could be written as:  
 

P = 𝜏𝜏𝑓𝑓πϕΔ

𝜆𝜆1𝛿𝛿1
tanh (𝜆𝜆1𝐿𝐿)           (19) 

 
Note that the elastically bonded stage of the interface ends when the relative slip at the loaded end reaches 𝛿𝛿1. 

Therefore the load at the elastic limit is  
 
P = 𝜏𝜏𝑓𝑓πϕ

𝜆𝜆1
tanh (𝜆𝜆1𝐿𝐿)           (20) 

 
2.2. Elastic-softening stage 

Once the load P has exceeded the elastic limit, the softening occurs at the loaded end of the interface (state II, 
Figure 4(b)). Part of the interface enters softening state (state II) while the rest remains elastic (state I). The load 
P continues to increase as the length of the softening zone 𝑎𝑎 increases. Substituting the bond-slip relationship into 
Eq. (7) gives the following governing equations:  
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𝑑𝑑2𝛿𝛿
𝑑𝑑𝑑𝑑2

− 𝜆𝜆1
2 𝛿𝛿 = 0   0 ≤ 𝛿𝛿 ≤ 𝛿𝛿1       (21) 

𝑑𝑑2𝛿𝛿
𝑑𝑑𝑑𝑑2

+ 𝜆𝜆2
2 𝛿𝛿 = 𝜆𝜆2

2 𝑒𝑒   𝛿𝛿1 ≤ 𝛿𝛿 ≤ 𝛿𝛿2       (22) 
 
where  
 
𝜆𝜆2

2 = 𝜆𝜆2 𝜏𝜏𝑓𝑓−𝜏𝜏𝑟𝑟
𝛿𝛿2−𝛿𝛿1

           (23) 
 

and 
 
𝑒𝑒 = 𝜏𝜏𝑓𝑓𝛿𝛿2−𝜏𝜏𝑟𝑟𝛿𝛿1

𝜏𝜏𝑓𝑓−𝜏𝜏𝑟𝑟
            (24) 

 
The boundary conditions at this stage are:  
 
𝜎𝜎𝑝𝑝 = 0 𝑎𝑎𝑡𝑡 𝑥𝑥 = 0;                 (25) 
 
𝜎𝜎𝑝𝑝 is continuous at 𝑥𝑥 = 𝐿𝐿 − 𝑎𝑎;                        (26) 
 
𝛿𝛿 = 𝛿𝛿1 or 𝜏𝜏 = 𝜏𝜏𝑓𝑓 at 𝑥𝑥 = 𝐿𝐿 − 𝑎𝑎;          (27) 
 
𝜎𝜎𝑝𝑝 = 𝑃𝑃

𝐴𝐴𝑝𝑝
 at 𝑥𝑥 = 𝐿𝐿           (28) 

 
The solution for the elastic region of the interface (0 ≤ 𝛿𝛿 ≤ 𝛿𝛿1 or 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 − 𝑎𝑎) is given by:  
 
𝛿𝛿 = 𝛿𝛿1

cosh (𝜆𝜆1𝑑𝑑)
cosh [𝜆𝜆1(𝐿𝐿−𝑎𝑎)]

           (29) 
 
and thus the interfacial shear stress and the axial stress in the reinforcement are:  
 
𝜏𝜏 = 𝜏𝜏𝑓𝑓

cosh (𝜆𝜆1𝑑𝑑)
cosh [𝜆𝜆1(𝐿𝐿−𝑎𝑎)]

           (30) 

𝜎𝜎𝑝𝑝 = πϕ𝛿𝛿1𝜆𝜆1
𝐴𝐴𝑝𝑝𝜆𝜆2

𝑃𝑃𝑃𝑃𝑃𝑃h (𝜆𝜆1𝑑𝑑)
𝑐𝑐𝑐𝑐𝑃𝑃h [𝜆𝜆1(𝐿𝐿−𝑎𝑎)]

          (31) 

 
The solution for the softening region of the interface (𝛿𝛿1 ≤ 𝛿𝛿 ≤ 𝛿𝛿2 or 𝐿𝐿 − 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝐿𝐿) is given by: 
 
𝛿𝛿 = (𝛿𝛿1 − 𝑒𝑒) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐[𝜆𝜆2(𝐿𝐿 − 𝑎𝑎 − 𝑥𝑥)] − 𝛿𝛿1

𝜆𝜆1
𝜆𝜆2

tanh[𝜆𝜆1(𝐿𝐿 − 𝑎𝑎)] ∗ sin[𝜆𝜆2(𝐿𝐿 − 𝑎𝑎 − 𝑥𝑥)] + 𝑒𝑒   (32) 

𝜏𝜏 = 𝜏𝜏𝑓𝑓 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐[𝜆𝜆2(𝐿𝐿 − 𝑎𝑎 − 𝑥𝑥)] + 𝛿𝛿1
𝜆𝜆1
𝜆𝜆2

𝜏𝜏𝑓𝑓−𝜏𝜏𝑟𝑟
𝛿𝛿2−𝛿𝛿1

tanh[𝜆𝜆1(𝐿𝐿 − 𝑎𝑎)] ∗ sin[𝜆𝜆2(𝐿𝐿 − 𝑎𝑎 − 𝑥𝑥)]    (33) 

𝜎𝜎𝑝𝑝 = πϕ
𝐴𝐴𝑝𝑝𝜆𝜆2

{(𝛿𝛿1 − 𝑒𝑒) ∗ 𝜆𝜆2 ∗ 𝑐𝑐𝑠𝑠𝑠𝑠[𝜆𝜆2(𝐿𝐿 − 𝑎𝑎 − 𝑥𝑥)] + 𝛿𝛿1𝜆𝜆1 tanh[𝜆𝜆1(𝐿𝐿 − 𝑎𝑎)] ∗ cos[𝜆𝜆2(𝐿𝐿 − 𝑎𝑎 − 𝑥𝑥)]}   (34) 

 
Thus the relative slip at the loaded end (x=L) is  
 
Δ = (𝛿𝛿1 − 𝑒𝑒) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜆𝜆2𝑎𝑎) + 𝛿𝛿1

𝜆𝜆1
𝜆𝜆2

tanh[𝜆𝜆1(𝐿𝐿 − 𝑎𝑎)] ∗ sin(𝜆𝜆2𝑎𝑎) + 𝑒𝑒      (35) 
 
Combining Eqs. (28) and (34) yields 
 
𝑃𝑃 = πϕ

𝜆𝜆2
{−(𝛿𝛿1 − 𝑒𝑒) ∗ 𝜆𝜆2 ∗ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜆𝜆2𝑎𝑎) + 𝛿𝛿1𝜆𝜆1 tanh[𝜆𝜆1(𝐿𝐿 − 𝑎𝑎)] ∗ cos(𝜆𝜆2𝑎𝑎)}     (36) 

 
If 𝑎𝑎 = 0, Eq. (36) returns to Eq. (20). If 𝜏𝜏𝑟𝑟 = 0, the governing equations and solutions are identical to the 

equations in Yuan et al. [4]. Therefore the derivation in this paper is valid.  
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When the relative slip at the loaded end Δ reaches 𝛿𝛿2 , the elastic-softening stage finishes, and debonding 
commences and propagates along the interface. The corresponding value of 𝑎𝑎, denoted by 𝑎𝑎𝑑𝑑 can be obtained from 
Eq. (35) as  

 
(𝛿𝛿1 − 𝑒𝑒) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜆𝜆2𝑎𝑎𝑑𝑑) + 𝛿𝛿1

𝜆𝜆1
𝜆𝜆2

tanh[𝜆𝜆1(𝐿𝐿 − 𝑎𝑎𝑑𝑑)] ∗ sin(𝜆𝜆2𝑎𝑎𝑑𝑑) + 𝑒𝑒 − Δ = 0     (37) 
 

2.3. Elastic-softening-debonding stage 
During this stage of loading, debonding commences and propagates along the interface. The interfacial shear 

stress distribution along the interface is shown in Figure 4(d). As debonding propagates, the peak shear stress 𝜏𝜏𝑓𝑓 
moves towards x=0. Assuming that the debonded length of the interface starting at the loaded end is 𝑑𝑑, Eqs. (29-
34) are still valid if replacing L by (𝐿𝐿 − 𝑑𝑑). Therefore, in the region of 0 ≤ 𝛿𝛿 ≤ 𝛿𝛿1 or 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎:  

 
𝛿𝛿 = 𝛿𝛿1

cosh (𝜆𝜆1𝑑𝑑)
cosh [𝜆𝜆1(𝐿𝐿−𝑑𝑑−𝑎𝑎)]

           (38) 
 
and thus the interfacial shear stress and the axial stress in the reinforcement are:  
 
𝜏𝜏 = 𝜏𝜏𝑓𝑓

cosh (𝜆𝜆1𝑑𝑑)
cosh [𝜆𝜆1(𝐿𝐿−𝑑𝑑−𝑎𝑎)]

           (39) 

𝜎𝜎𝑝𝑝 = πϕ𝛿𝛿1𝜆𝜆1
𝐴𝐴𝑝𝑝𝜆𝜆2

𝑃𝑃𝑃𝑃𝑃𝑃h (𝜆𝜆1𝑑𝑑)
𝑐𝑐𝑐𝑐𝑃𝑃h [𝜆𝜆1(𝐿𝐿−𝑑𝑑−𝑎𝑎)]

          (40) 

 
In the region of 𝛿𝛿1 ≤ 𝛿𝛿 ≤ 𝛿𝛿2 or 𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝐿𝐿 − 𝑑𝑑 
 
𝛿𝛿 = (𝛿𝛿1 − 𝑒𝑒) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐[𝜆𝜆2(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎 − 𝑥𝑥)] − 𝛿𝛿1

𝜆𝜆1
𝜆𝜆2

tanh[𝜆𝜆1(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎)] ∗ sin[𝜆𝜆2(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎 − 𝑥𝑥)] + 𝑒𝑒  (41) 

𝜏𝜏 = 𝜏𝜏𝑓𝑓 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐[𝜆𝜆2(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎 − 𝑥𝑥)] + 𝛿𝛿1
𝜆𝜆1
𝜆𝜆2

𝜏𝜏𝑓𝑓−𝜏𝜏𝑟𝑟
𝛿𝛿2−𝛿𝛿1

tanh[𝜆𝜆1(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎)] ∗ sin[𝜆𝜆2(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎 − 𝑥𝑥)]   (42) 

𝜎𝜎𝑝𝑝 = πϕ
𝐴𝐴𝑝𝑝𝜆𝜆2

{(𝛿𝛿1 − 𝑒𝑒) ∗ 𝜆𝜆2 ∗ 𝑐𝑐𝑠𝑠𝑠𝑠[𝜆𝜆2(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎 − 𝑥𝑥)] + 𝛿𝛿1𝜆𝜆1 tanh[𝜆𝜆1(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎)] ∗ cos[𝜆𝜆2(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎 − 𝑥𝑥)]} 

            (43) 
 
The elastic interface disappears when the relative slip at the unloaded end (x=0) is 𝛿𝛿1. Using Eq. (38), it is found 

that the elastic stage finishes when  
 
𝐿𝐿 − 𝑑𝑑 = 𝑎𝑎            (44) 
 
Using the boundary condition of 𝛿𝛿 = 𝛿𝛿2  𝑎𝑎𝑡𝑡 𝑥𝑥 = 𝐿𝐿 − 𝑑𝑑, the relationship between 𝑑𝑑 and 𝑎𝑎 is obtained by using 

Eq. (41):  
 
𝛿𝛿2 = (𝛿𝛿1 − 𝑒𝑒) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜆𝜆2𝑎𝑎) + 𝛿𝛿1

𝜆𝜆1
𝜆𝜆2

tanh[𝜆𝜆1(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎)] ∗ sin(𝜆𝜆2𝑎𝑎) + 𝑒𝑒     (45) 
 
Combining Eqs. (44) and (45), the softening length 𝑎𝑎𝑢𝑢 when the elastic interface disappears is obtained as:  
 

𝑎𝑎𝑢𝑢 =
𝑎𝑎𝑟𝑟𝑐𝑐𝑐𝑐𝑃𝑃(𝛿𝛿2−𝑒𝑒𝛿𝛿1−𝑒𝑒

)

𝜆𝜆2
           (46) 

 
In the debonded region, that is 𝛿𝛿 ≥ 𝛿𝛿2 or 𝐿𝐿 − 𝑑𝑑 ≤ 𝑥𝑥 ≤ 𝐿𝐿, the governing equation is:   
 
𝑑𝑑2𝛿𝛿
𝑑𝑑𝑑𝑑2

− 𝜆𝜆2𝜏𝜏𝑟𝑟 = 0           (47) 
 
Using the continuous boundary conditions at 𝑥𝑥 = 𝐿𝐿 − 𝑑𝑑, the solution is found as:  
 
𝛿𝛿 = 𝜆𝜆2𝜏𝜏𝑟𝑟

2
[𝑥𝑥2 − (𝐿𝐿 − 𝑑𝑑)2] + 𝛿𝛿2 + (𝐿𝐿 − 𝑑𝑑 − 𝑥𝑥)(𝛿𝛿1 − 𝑒𝑒)𝜆𝜆2 sin(𝜆𝜆2𝑎𝑎) − (𝐿𝐿 − 𝑑𝑑 − 𝑥𝑥)𝛿𝛿1𝜆𝜆1 tanh[𝜆𝜆1(𝐿𝐿 − 𝑑𝑑 −

𝑎𝑎)] 𝑐𝑐𝑐𝑐𝑐𝑐(𝜆𝜆2𝑎𝑎) + 𝜆𝜆2𝜏𝜏𝑟𝑟(𝐿𝐿 − 𝑑𝑑)(𝐿𝐿 − 𝑑𝑑 − 𝑥𝑥)         (48) 
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Thus the relative slip at the loaded end (x=L) is:  
 
Δ = 𝜆𝜆2𝜏𝜏𝑟𝑟

2
𝑑𝑑2 + 𝛿𝛿2 − 𝑑𝑑(𝛿𝛿1 − 𝑒𝑒)𝜆𝜆2 sin(𝜆𝜆2𝑎𝑎) + 𝑑𝑑𝛿𝛿1𝜆𝜆1 tanh[𝜆𝜆1(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎)] 𝑐𝑐𝑐𝑐𝑐𝑐(𝜆𝜆2𝑎𝑎)    (49) 

 
In the debonded region, the interfacial shear stress is 𝜏𝜏𝑟𝑟. Thus the load P could be obtained by 
 
𝑃𝑃 = 𝑃𝑃(𝑥𝑥 = 𝐿𝐿 − 𝑑𝑑) + 𝜏𝜏𝑟𝑟𝜋𝜋𝜋𝜋𝑑𝑑  
= πϕ

𝜆𝜆2
{−(𝛿𝛿1 − 𝑒𝑒) ∗ 𝜆𝜆2 ∗ 𝑐𝑐𝑠𝑠𝑠𝑠(𝜆𝜆2𝑎𝑎) + 𝛿𝛿1𝜆𝜆1 tanh[𝜆𝜆1(𝐿𝐿 − 𝑑𝑑 − 𝑎𝑎)] ∗ cos(𝜆𝜆2𝑎𝑎)} + 𝜏𝜏𝑟𝑟𝜋𝜋𝜋𝜋𝑑𝑑    (50) 

 
Eq. (50) is consistent with Yuan, et.al [4] if the residual shear stress 𝜏𝜏𝑟𝑟 = 0.  
 

2.4. Softening-debonding stage 
This stage is governed by Eqs. (22) and (47), with the following boundary conditions:  
 
𝜎𝜎𝑝𝑝 = 0 𝑎𝑎𝑡𝑡 𝑥𝑥 = 0;             (51) 

𝜎𝜎𝑝𝑝 is continuous at 𝑥𝑥 = 𝑎𝑎;           (52) 

𝛿𝛿 = 𝛿𝛿2 or 𝜏𝜏 = 𝜏𝜏𝑓𝑓 at 𝑥𝑥 = 𝑎𝑎;          (53) 

𝜎𝜎𝑝𝑝 = 𝑃𝑃
𝐴𝐴𝑝𝑝

 at 𝑥𝑥 = 𝐿𝐿 , or 𝑃𝑃(𝑑𝑑=𝐿𝐿) = 𝑃𝑃(𝑑𝑑=𝑎𝑎) + 𝜏𝜏𝑟𝑟  πϕ        (54) 

 
In the softening range (0 ≤ 𝑥𝑥 ≤ 𝑎𝑎), the solutions of the governing equations are obtained as:  
 
𝛿𝛿 = 𝛿𝛿2−𝑒𝑒

𝑐𝑐𝑐𝑐𝑃𝑃 (𝜆𝜆2𝑎𝑎)
𝑐𝑐𝑐𝑐𝑐𝑐(𝜆𝜆2𝑥𝑥) + 𝑒𝑒          (55) 

𝜏𝜏 = − 𝜏𝜏𝑓𝑓−𝜏𝜏𝑟𝑟
𝛿𝛿2−𝛿𝛿1

𝛿𝛿2−𝑒𝑒
cos(𝜆𝜆2𝑎𝑎)

𝑐𝑐𝑐𝑐𝑐𝑐(𝜆𝜆2𝑥𝑥) − 𝜏𝜏𝑓𝑓−𝜏𝜏𝑟𝑟
𝛿𝛿2−𝛿𝛿1

𝑒𝑒 + 𝜏𝜏𝑓𝑓𝛿𝛿2−𝜏𝜏𝑟𝑟𝛿𝛿1
𝛿𝛿2−𝛿𝛿1

       (56) 

𝜎𝜎𝑝𝑝 = −πϕ𝜆𝜆2
𝐴𝐴𝑝𝑝𝜆𝜆2

𝛿𝛿2−𝑒𝑒
𝑐𝑐𝑐𝑐𝑃𝑃(𝜆𝜆2𝑎𝑎)

𝑐𝑐𝑠𝑠𝑠𝑠(𝜆𝜆2𝑥𝑥)          (57) 

 
In the debonded range, the solutions are:  
 
𝛿𝛿 = 𝜆𝜆2𝜏𝜏𝑟𝑟

2
(𝑥𝑥 − 𝑎𝑎)2 + 𝛿𝛿2 − 𝜆𝜆2(𝛿𝛿2 − 𝑒𝑒) 𝑡𝑡𝑎𝑎𝑠𝑠(𝜆𝜆2𝑎𝑎) (𝑥𝑥 − 𝑎𝑎)       (58) 

𝜎𝜎𝑝𝑝 = − πϕ
𝐴𝐴𝑝𝑝𝜆𝜆2

[𝜆𝜆2𝜏𝜏𝑟𝑟(𝑥𝑥 − 𝑎𝑎) − 𝜆𝜆2(𝛿𝛿2 − 𝑒𝑒) 𝑡𝑡𝑎𝑎𝑠𝑠(𝜆𝜆2𝑎𝑎)]       (59) 

 
Thus the relative slip at the loaded end (x=L) is 
 
Δ = 𝜆𝜆2𝜏𝜏𝑟𝑟

2
(𝐿𝐿 − 𝑎𝑎)2 + 𝛿𝛿2 − 𝜆𝜆2(𝛿𝛿2 − 𝑒𝑒) 𝑡𝑡𝑎𝑎𝑠𝑠(𝜆𝜆2𝑎𝑎) (𝐿𝐿 − 𝑎𝑎)       (60) 

 
and the load P is:  

 
𝑃𝑃 = −πϕ𝜆𝜆2

𝜆𝜆2
(𝛿𝛿2 − 𝑒𝑒) 𝑡𝑡𝑎𝑎𝑠𝑠(𝜆𝜆2𝑎𝑎) + 𝜏𝜏𝑟𝑟𝜋𝜋𝜋𝜋𝑑𝑑         (61) 

 
3. Parametric studies 

 
The material properties of the carbon fiber textile reinforcement given in paper [5] are adopted in this study. 

The Young’s modulus of the carbon fiber is 230GPa, and the roving cross-sectional area (24k filament) is 0.889 
𝑚𝑚𝑚𝑚2, which results in a diameter of 1.1mm. C100 concrete are used for parametric studies, where the Young’s 
modulus of the concrete varies between is taken as 45 GPa. Textile mesh size between 5mm and 25mm are 
commonly used in practice, which represents a concrete width of 5mm to 25mm for each roving. The thickness of 
concrete between textile layers is usually between 5mm and 20mm, which will be adopted in the parametric studies 
in this paper. The local bond-slip law is estimated using paper [5], where 𝛿𝛿1 = 0.01𝑚𝑚𝑚𝑚, 𝛿𝛿2 = 0.7𝑚𝑚𝑚𝑚, 𝜏𝜏𝑓𝑓 =
7.2𝑀𝑀𝑃𝑃𝑎𝑎, 𝑎𝑎𝑠𝑠𝑑𝑑 𝜏𝜏𝑟𝑟 = 2𝑀𝑀𝑃𝑃𝑎𝑎. The mechanical behavior of the fiber-concrete interface will be discussed in this section.  
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3.1. Load-displacement curve 
Figure 5 shows the load-displacement curve of the pull-push test of a textile reinforced concrete. If not specified, 

the cross-sectional area of the concrete is taken as 80𝑚𝑚𝑚𝑚2 , and the local bond-slip law is taken as 𝛿𝛿1 =
0.01𝑚𝑚𝑚𝑚, 𝛿𝛿2 = 0.7𝑚𝑚𝑚𝑚, 𝜏𝜏𝑓𝑓 = 7.2𝑀𝑀𝑃𝑃𝑎𝑎, 𝑎𝑎𝑠𝑠𝑑𝑑 𝜏𝜏𝑟𝑟 = 2𝑀𝑀𝑃𝑃𝑎𝑎 . As the analytical solution does not represent the 
unloading range (softening-debonding stage) reasonably, only Figure 5(a) has included them for illustration 
purposes. It is seen that the bond length does not affect the load-displacement behavior obviously. Longer bond 
length may provide better ductility owing to its high deformation capacity. However bear in mind that the 
analytical solution is based on the assumptions of elastic material properties. Therefore when the bond length is 
very long, debond may not be the critical failure mode compared with material yielding or fracture. The interfacial 
residual shear stress 𝜏𝜏𝑟𝑟 has a significant effect on the hardening behavior. Thus the mechanical friction caused by 
aggregate interlocking plays a significant role in bond performance. Surface treatment of carbon fiber textiles 
could be an effective solution in improving mechanical behavior of textile reinforced concrete. Same effect has 
been seen on the ultimate relative slip 𝛿𝛿2, which also affect the hardening behavior of the textile reinforced concrete 
considerably. Compared with 𝛿𝛿2, 𝛿𝛿1 only affects the bond behavior insignificantly.  

 

  
(a) Effect of bond length (b) Effect of interfacial residual shear stress 𝜏𝜏𝑟𝑟 

  
(c) Effect of 𝛿𝛿2 (d) Effect of 𝛿𝛿1 

Figure 5 Load displacement curves of pull-push bond specimens 
 

3.2. Stress distributions 
Figure 6 demonstrates the stress distributions along the interface of the specimen. A bond length of 250mm and 

a cross-sectional area of 50 𝑚𝑚𝑚𝑚2 have been chosen for this case study. The interfacial shear stress distribution has 
agreed well with the diagram sketched in Figure 4. Note that the tensile strength of carbon fiber is commonly seen 
between 3GPa and 4GPa. The carbon fiber would have snapped in the softening-debonding stage in this case. 
Therefore a specimen in practice will not be able to reach the ultimate debonding force prediction in this paper, 
which is to say the analytical solution derived in this paper provides an upper bound of the interfacial bond behavior.  

 
4. Conclusions 

 
This paper has presented a closed-form solution of the pull-push model of a textile reinforced concrete. The 

analytical solution enables the prediction of the full debonding propagation process, including the interfacial shear 
stress distributions and axial stresses in the reinforcement and the concrete. This will facilitate users to understand 
the mechanical behavior of textile-to-concrete interface and to optimize the bond requirement and reinforcement 
volume in concrete. Note that the analytical solution is based on the assumption that the bond length is sufficiently 
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long so that the ultimate load could be effectively transferred. If the bond length is smaller than the critical 
softening distance 𝑎𝑎𝑢𝑢 (Eq. (46)), the interface may not experience all stages as shown in Figure 4, and therefore 
the load-displacement history may vary. This will be discussed in future work.    

 

  
(a) Interfacial shear stress distribution (b) Axial stress distribution of the reinforcement 

Figure 6 Local stress distributions along the specimen 
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