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Abstract: Concrete filled steel tube (CFST) is increasingly used in engineering construction as columns and 

beams. CFST is known to absorb large amounts of energy as a result of the composite effect. Internationally, there 

are increasing amounts of waste rubber. In this study recycled rubber is used as aggregate supplement in concrete. 

Rubberised concrete is known to be more ductile than conventional concrete however has a lower compressive 

strength. This study investigated the performance of thirty rubberised concrete-filled single-skin steel tubes under 

combined loading conditions and compared the results against six steel hollow tubular members. Three rubber 

replacement ratios, 0%, 15% and 30%, three load eccentricities and four tube sections with section slenderness 

(b/t, width/thickness) of 18 to 36 were examined. The results have shown that the composite section had greatly 

improved load carrying capacity. The ductile rubberised concrete was more effective in delaying the premature 

buckling failure of the steel tube compared to the normal concrete. The interaction diagrams were constructed 

from the experiments and theoretical calculations. It was found that the behaviours of the rubberised concrete filled 

steel tubes could be accurately predicted using existing design guidelines. This study demonstrated the potential 

of using rubberised concrete as a cost-effective solution to safe roadside barriers and structural members in 

buildings located in seismic active zones.  
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1. Introduction

Concrete filled steel tubes (CFST) are increasingly used in engineering construction as columns and beams. 

The concrete provides restraint to buckling of the steel tube therefore increasing its strength and ductility. 

Additionally, the steel tube provides confinement of the concrete increasing its strength. As a result of the 

composite effect CFST can absorb large amounts of energy [1]. 

In Australia and internationally there are increasing amounts of waste rubber being generated. It is an 

environmental, health and fire hazard, and costs millions of dollars to dispose every year [2,3]. As such there is a 

growing need for uses of recycled rubber [4–6]. One use is rubber as aggregate in concrete. The rubberised concrete 

(RuC) has improved mechanical properties such as ductility, fracture toughness and energy absorption compared 

to the normal concrete (NC), however with reduced compressive strength and stiffness. Limited progress has been 

made to improve the mechanical strength of RuC [7]. To mitigate the significant reduction in strength, steel tubes 

may be filled with rubberised concrete to form rubberised concrete filled steel tubes (RuCFST). The confinement 

of the rubberised concrete increases its strength in the same way as standard concrete. Confined rubberised 

concrete has high ductility and as such it can maintain its strength after yielding unlike standard concrete. 

Over the past few decades, research has investigated single and double skin CFST [8]. In recent decades, design 

specifications for CFST have been included in design codes such as Eurocode 4 and CIDECT 4 [9,10]. The use of 

CFST in engineering construction has also been increasing. By comparison, there is very little understanding of 

RuCFST. In particular there is a lack of knowledge relating to the behaviour of RuCFST under combined loading. 

2. Experimental program

Three mixes were compared in this study, namely NC (normal concrete), RuC15, RuC30 to denote the 

replacement ratios of rubber particles to aggregates. The binder material is the general purpose ordinary Portland 

cement. The 2-5 mm crumb rubber was suitable to partially replace <4 mm aggregates whereas 5-7 mm chip rubber 

was suitable to replace 7 mm coarse aggregate. The crumb and chip rubber used in this study were treated with 

1

https://doi.org/10.32732/jcec.2019.8.1.1
Journal of Civil Engineering and Construction 2019;8(1):1-7

mailto:mohamed.elchalakani@uwa.edu.au
mailto:minhao.dong@uwa.edu.au
mailto:ali.karrech@uwa.edu.au


10% sodium hydroxide (NaOH) solution for 24 hours to increase bonding with cement matrix and increase its 

specific weight [11]. The mix proportions of the three concrete mixes are shown in Table 1. A water to cement 

ratio of 0.48 was adopted for all three mixes to ensure satisfactory workability.  

Table 1. Mix proportions of NC, RuC15 and RuC30 

Mix 
Water 

(kg/m3) 

Cement 

(kg/m3) 

Fine 

aggregate 
(kg/m3) 

10 mm 
coarse 

aggregate 

(kg/m3) 

7 mm 
coarse 

aggregate 

(kg/m3) 

<4mm 
Coarse 

aggregate 

(kg/m3) 

7-10 mm 
rubber 

chip 

(kg/m3) 

2-5 mm 
rubber 

crumb

(kg/m3) 

Concrete 

compressi

ve 
strength 

f’c (MPa) 

NC 205 426 843 444 306 130 0 0 40.8 

RuC15 205 426 648 311 214 91 45 58 17.9 

RuC30 205 426 453 178 122 52 90 117 9.5 

Fig. 1 Test setup for (a) CFST columns,  and (b) CFST beams 

Four grade C350L0 cold-formed circular steel sections were used for CFST beams and columns. In total, the 

behaviours of 18 CFST columns (2 sections, 3 types of concrete and 3 load eccentricities) and 12 CFST beams (4 

sections and 3 types of concrete) were investigated. The specimen designation followed steel tube depth-steel tube 

thickness-load eccentricity (or “F” for the flexural tests)-rubber replacement ratio. “CFT” was used to represent 

concrete filled tube composite sections and “CHS” represented hollow circular hollow section (CHS) members. 

The details of the CHS tubes, including slenderness classifications from AS 4100 [12] and comparison to the 

provisions in Eurocode 3 [13] are shown in Table 2. The composite specimens were covered with plastic sheet to 

limit drying shrinkage and cured for one month at ambient room temperature inside the Structural Laboratory at 

University of Western Australia.  
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Table 2. Details of the CHS tubes 

Section 

Depth 
d 

(mm) 

 

Thickness 
t 

(mm) 

 

Area 

of 

steel 
As 

(mm2) 

Area of 
concrete 

Ac 

(mm2) 

Section 

Slenderness 
b/t 

Section 
Slenderness 

𝑑

𝑡

𝑓𝑦

250
 

AS 4100 

[12] 

Section 
Slenderness 

𝑑

𝑡

𝑓𝑦

235
 

Eurocode 3 

[13] 

Section 
Slenderness 

AS4100 

[12] 

Section 

Slendern
ess 

Eurocode 

3 
[13] 

CHS89×5 88.9 5 1318 4889 18 25 26 Compact Class 1 

CHS89×3.2 88.9 3.2 862 5346 28 39 41 Compact Class 1 

CHS114×3.6 114.3 3.6 1252 9009 32 44 47 Compact Class 1 
CHS114×3.2 114.3 3.2 1117 9144 36 50 53 Non-compact Class 2 

 

The CFST columns were subjected to concentric and eccentric loading by a 600 kN Baldwin machine through 

a displacement-control regime. The test setups for columns and beams are demonstrated in Fig. 1. The load 

eccentricity was applied through the distance between the centre of the base place and the centre of the column. 

Four-point bending tests were adopted to measure the flexure strength of the CHS tubes and CFST beams. Each 

specimen was setup on the Baldwin compression machine with 100 mm overhanging segments from each end of 

the beam and 267 mm distance between each loading/support points. 

 

3. Results and discussion 
 

3.1. Load carrying capacity 
The 28-day compressive strengths for NC, RuC15 and RuC30 were 40.8, 17.9 and 9.5 MPa, respectively. The 

significant strength reduction by rubber replacement was observed, with 15% rubber replacement reducing the 

strength by 56% and 30% replacement by 77%, respectively. 

The test results and the calculated concrete contribution of the 36 concrete filled and hollow tubular specimens 

are shown in Table 3. The concrete contribution was calculated with respect to the load capacities of the 

corresponding hollow tube results. Overall, the concrete infill significantly improved the load carrying capacity of 

the hollow tubes by effectively delaying the buckling failure. A lower rubber replacement ratio was seen to 

correspond to higher load capacity due to higher strength of the encased concrete. Higher load capacity was also 

seen for the columns loaded at lower load eccentricity due to the lower moment. A more compact cross-section 

would also correspond to a greater load carrying capacity due to the better confinement it provided to the concrete 

infill and its lower tendency to buckle. On average, the RuC15 and RuC30 filled steel tubes were 9.3% and 19.1% 

weaker, respectively, than those filled with the much stronger NC. This showed RuCFST had adequate strength to 

be adopted as structural members.  

 

3.2. Interaction diagrams 
The interaction diagrams of concrete filled CHS89×3.2 and CHS114×3.6 specimens were constructed in 

accordance to Eurocode 4 [9] and CIDECT [10]. Four points were obtained for each interaction curve. At pure 

compression (Point A), MA = 0 and NA is calculated from eq. 1.   

 

𝑁𝐴 = 𝑁𝑝𝑙,𝑅𝑑 = 𝐴𝑐𝑓𝑐
′ + 𝐴𝑠𝑓𝑦                                                                                                                               (1)  

 

At pure bending (Point B) from Eurocode 4 [9], NB = 0 and MB was obtained from eq. 2. 𝛼𝑐 was taken as 1 to 

account for the confinement provided by the steel tube. 

 

𝑀𝐵 = 𝑀𝑝𝑙,𝑅𝑑 = (𝑊𝑝𝑎 − 𝑊𝑝𝑎,𝑛)𝑓𝑦 + 0.5(𝑊𝑝𝑐 − 𝑊𝑝𝑐,𝑛)𝛼𝑐𝑓𝑐                                                                               (2) 

  

Where  

 

 𝑊𝑝𝑐 =
(𝑑−2𝑡)3

6
 ; 𝑊𝑝𝑎 =

𝑑3

6
− 𝑊𝑝𝑐; 𝑊𝑝𝑐,𝑛 = (𝑑 − 2𝑡)ℎ𝑛

2 ; 𝑊𝑝𝑎,𝑛 = 𝑑ℎ𝑛
2 − 𝑊𝑝𝑐,𝑛;  

 

and 

 ℎ𝑛 =
𝐴𝑐𝑓𝑐

′

2𝑑𝑓𝑐
′+4𝑡(2𝑓𝑦−𝑓𝑐

′)
. 
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Table 3. Test results of the 36 concrete filled and hollow tubular columns and beams 

Specimen Load (kN) Concrete contribution ΔPc (kN) Concrete contribution %ΔPc 

CHS89×3.2-F 87 - - 

CFT89×3.2-F-0 124 37 42% 

CFT89×3.2-F-15 114 27 31% 

CFT89×3.2-F-30 112 25 28% 

CHS89×5-F 122 - - 

CFT89×5-F-0 153 31 25% 

CFT89×5-F-15 146 24 20% 

CFT89×5-F-30 139 16 13% 

CHS114×3.2-F 128 - - 

CFT114×3.2-F-0 197 69 54% 

CFT114×3.2-F-15 183 55 43% 

CFT114×3.2-F-30 179 51 40% 

CHS114×3.6-F 171 - - 

CFT114×3.6-F-0 252 82 48% 

CFT114×3.6-F-15 233 62 36% 

CFT114×3.6-F-30 219 49 29% 

CHS89×3.2-0 316 - - 

CFT89×3.2-0-0 616 299 95% 

CFT89×3.2-0-15 512 196 62% 

CFT89×3.2-0-30 414 98 31% 

CFT89×3.2-22-0 312 - - 

CFT89×3.2-22-15 227 - - 

CFT89×3.2-22-30 195 - - 

CFT89×3.2-45-0 195 - - 

CFT89×3.2-45-15 149 - - 

CFT89×3.2-45-30 135 - - 

CHS114×3.6-0 520 - - 

CFT114×3.6-0-0 1001 482 93% 

CFT114×3.6-0-15 854 334 64% 

CFT114×3.6-0-30 667 148 28% 

CFT114×3.6-29-0 472 - - 

CFT114×3.6-29-15 385 - - 

CFT114×3.6-29-30 323 - - 

CFT114×3.6-57-0 293 - - 

CFT114×3.6-57-15 266 - - 

CFT114×3.6-57-30 226 - - 

The Point B from CIDECT [10] was defined as Eq. 3, which required to obtain a coefficient m◯ for CHS. 

Mpl,Rd = m◯
h3-(d-2t)3

6
fy  (3) 

Point C and Point D formed an equilateral triangle on the interaction diagram. The moment at Point C was the 

same as that at Point B, however its load was defined as eq. 4. 

𝑁𝑐 = 𝑁𝑝𝑚,𝑅𝑑 = 𝐴𝑐𝛼𝑐𝑓𝑐
′  (4) 

At Point D, the load is half of that at Point C and the moment was at the maximum (eq. 5). 

𝑀𝐷 = 𝑀𝑚𝑎𝑥,𝑅𝑑 = 𝑊𝑝𝑎𝑓𝑦 + 0.5𝑊𝑝𝑐𝛼𝑐𝑓𝑐
′ (5) 

The interaction diagrams of concrete filled CHS89×3.2 and CHS114×3.6 specimens constructed from the 

experimental results and theoretical calculations by Eurocode 4 [9] and CIDECT [10] are shown in Fig. 2 and 3, 

respectively. Overall, the constructed theoretical interaction curves showed acceptable agreements to the 

experimental results. Safe design could be produced for RuC filled less compact sections, i.e. CHS114×3.6 with 

d/t = 32. The “balance point” D shifted inwards and the distance between Point C and Point B decreased as the 

concrete compressive strength reduced. This was due to the limited contribution of concrete as the moment 

increased. The interaction diagram tended to a straight line and shifted inwards as the steel contribution increased, 

as shown by the increasing Asfy/Npl,Rd values in the figures.  

4

M. Elchalakani et al. Journal of Civil Engineering and Construction 2019;8(1):1-7



 

 

 
Fig. 2 The comparison between the experimental results and the analytical interaction diagram [9] of concrete 

filled (a) CHS89×3.2 and (b) CHS114×3.6 specimens 

 

In Fig. 2a, the measured load carrying capacity of the concentrically loaded concrete filled CHS89×3.2 beams 

were underestimated by Eurocode 4 [9] by an average 31.9%. This was due to the compact section provided better 

confinement to the concrete core and was less prone to local buckling failure. As the load eccentricity increased, 

the safety margin reduced significantly and became unsafe from a design point of view. This was especially 

noticeable for NC filled columns. The brittle NC infill failed prematurely due to the large deformation and was 

unable to deform sufficiently to fill the buckle of the steel tube. The more ductile RuC infill was more effective in 

delaying the buckling failure due to the larger deformation capacity. The moment capacities of the CFST beams 

obtained from four-point bending tests greatly exceeded the predictions by Eurocode 4 [9]. The exceptional 

moment capacity of the RuCFST beams showed the potential to be used as flexible roadside barriers. 

In Fig. 2b, the concentrically loaded columns confined by the non-compact CHS114×3.6 again exceeded the 

theoretical predictions by an average 21.6%. The safety margin was lower than concrete filled CHS89×3.2 due to 

the lower slenderness, which in turn was less effective in delaying the local buckling of the steel tube. The average 

safety margin was lower for eccentrically load columns, similar to concrete filled CHS89×3.2 columns. However, 

the design of RuC filled members were still safe by a satisfactory margin. The beams with CHS114×3.6 failed in 

bending, resulting in much higher (85.8%) moment capacities than the theoretical calculations. As a comparison, 

the safety margin for concrete filled CHS89×3.2 beams was 73.3%.  

Fig. 3 showed the interaction diagram constructed in accordance to CIDECT [10]. It is slightly less conservative 

compared to Eurocode 4 [9] in terms of moment capacities for the more slender CHS114×3.6. Similarly, the 

concentrically loaded CFST columns and CFST beams greatly exceeded the predicted capacities, showing the 

effectiveness of using the RuC as a cost-effective infill. 

Fig. 4 shows the normalised interaction diagram of the experimental results of the 24 concrete filled CHS89×3.2 

and CHS114×3.6 specimens. The load and moment were normalised by the load and moment capacities of their 

respective circular hollow tubes. Larger improvement over the hollow tubes was observed for the concrete filled 

CHS114×3.6. CHS114×3.6 was more prone to buckling due to its larger section slenderness, therefore the effect 

of the concrete infill on delaying such failure was more noticeable. This was especially seen for the eccentrically 

loaded columns under combined moment and axial load. The difference between RuC and NC reduced as the load 

eccentricity increased, and was at the minimum under flexural loading. This was due to the limited contribution 
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of concrete as the concrete stress block shrunk in size. RuCFST had comparable performance in bending to NC, 

while being more environmentally-friendly and cost-effective. RuCFST beams could be used as safe roadside 

barriers to replace the current concrete or hollow tubular roadside barriers. 

 

 
Fig. 3 The comparison between the experimental results and the analytical interaction diagram [10] of concrete 

filled (a) CHS89×3.2 and (b) CHS114×3.6 specimens 

 

 
Fig. 4 The normalised interaction diagram of 24 CFST specimens 

 

 

4. Conclusions 
 

Thirty circular CFST specimens with 0%, 15% and 30% rubber replacement ratios and 4 different steel sections 

were tested under axial, flexural and combined loading conditions. The following conclusions could be drawn: 

1) Significant strength reduction was observed in RuC.  
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2) The strength reduction of rubber replacement could be mitigated by confinement through a steel tube. The

RuC was effective in delaying the premature buckling of the composite section, which corresponded to the larger 

safety margin over the predicted values in the design guides. They could be used cost-effectively as structural 

members. 

3) The RuCFST beams showed more than 70% increments on average compared to the theoretical predictions,

which showed the possibility of using RuCFST as flexible roadside barriers. 
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